derive the eq maximum motion
of circular motion of a car in banked road
Answers
Answered by
0
N is normal force,
f is frictional force
Ncosθ=mg+fsinθ⟶(1)
and
fcosθ+Nsinθ=
r
mv
2
⟶(2)
f=μN⟶(3)
∴Ncosθ=μNsinθ+mg
N(cosθ−μsinθ)=mg
⇒N=
cosθ−μsinθ
mg
⟶(4)
Putting (3) and (4) in (2):
cosθ−μsinθ
μmgcosθ
+
cosθ−μsinθ
mgsinθ
=
r
mv
2
⇒μmgrcosθ+mgrsinθ=mv
2
cosθ−μmv
2
sinθ
⇒μmgr+mgrtanθ=mv
2
−μmv
2
tanθ
⇒mgr(μ+tanθ)=mv
2
(1−μtanθ)
⇒
(1−μtanθ)
rg(μ+tanθ)
=v
2
⇒v=
(1−μtanθ)
rg(μ+tanθ)
Similar questions