Physics, asked by Jayanthrocky, 1 year ago

Derive the equation for maximum height and range of a projectile

Answers

Answered by ShivamKashyap08
5

\huge{\underline{\underline{.........Answer.........}}}

\huge{\underline{Given:-}}

The projectile reaches a height H.

The projectile reaches a height H.and, it covers range R at time t = t.

\huge{\underline{Explanation:-}}

Case-1

Maximum height is the height reached by the projectile vertically.

When y = H ; V(y) = 0.

 {v}^{2}  -  {u}^{2}  = 2as

 {0}^{2}  -  {u}^{2}  \sin( \theta)^{2}  = 2 \times  - g \times H  \:

H  =  \frac{ {u}^{2}  \sin( \theta)^{2}}{2g}

\boxed{\boxed{H  =  \frac{ {u}^{2}  \sin( \theta)^{2}}{2g}}}

Case-2.

It is the maximum horizontal distance travelled by the particle.

x = R. ; t = T.

x = (u  \cos \theta )  \times t

x =( u \cos \theta)  \times T \:

But

T =  \frac{2u \sin( \theta) }{g}

substituting the values.

R = u \cos \theta \times  \frac{2u \sin( \theta) }{g}

R =   \frac{ {u}^{2}2 \sin( \theta)   \cos( \theta) }{g}

As,

2 \sin( \theta)  \cos( \theta)  =  \sin(2 \theta)

substitute the values.

R =  \frac{ {u}^{2}  \sin(2 \theta) }{g}

\boxed{\boxed{R =  \frac{ {u}^{2}  \sin(2 \theta) }{g}}}

Hence equations derived.

# refer the attachment for figure.

Attachments:
Similar questions