Math, asked by gpushyasree, 1 year ago

derive the equation for the volume of frustum

Answers

Answered by rdahin
0
  Let us assume that R, r, and h, but not H, the total height of the cone from which the frustum was cut. If we can find it, then the volume of the frustum will be the volume of the whole cone, pi R^2 H/3, minus the volume of the cone we cut off the top, pi r^2 (H-h)/3. The triangles PAB and PCD are similar, so we can write the equation
 AB CD R r -- = -- or - = --- PA PC H H-h Cross-multiplying [that is, multiplying both sides by H(H-h)], we get R(H-h) = rH We can distribute the left side and collect H terms, then divide: RH - Rh = rH RH - rH = Rh (R-r)H = Rh Rh H = --- R-r Now let's write the volume formula and substitute this formula for H: pi pi V = -- R^2 H - -- r^2 (H-h) 3 3 pi = -- (R^2 H - r^2 H + r^2 h) 3 pi = -- [(R^2 - r^2) H + r^2 h] 3 pi Rh = -- [(R^2 - r^2) --- + r^2 h] 3 R-r pi R = -- [(R^2 - r^2) --- + r^2] h 3 R-r We can write R^2 - r^2 as (R - r)(R + r) and cancel: pi = --- [(R + r) R + r^2] h 3 pi = --- [R^2 + Rr + r^2] h 3 That's the formula.

Answered by spidermann7654
0

Answer:

Step-by-step explanation:

Step-by-step explanation:

Hello

Please refer the attachment for step by step explanation

Hope it helps you

please mark as brainliest : ) : )

Attachments:
Similar questions