Physics, asked by sharmanamit131, 9 months ago

derive the equation of motion (i) v = u +at (ii) v×2 = u×2 +2as​

Answers

Answered by amansharma264
8

 \bf \to \:  \green{{  \underline{explanation \div}}}

 \rm \to \: by \: using \: calculas \: method

 \rm \to \: 1) =  \: v = u \:  +  at \\  \\  \rm \to \: a \:  =  \frac{dv}{dt}  \\  \\  \rm \to \: dv \:  = adt \\  \\  \rm \to \:  \int  \limits_{u} {}^{v} (dv)  =  \int  \limits_{0} {}^{t} (adt)  \\  \\  \rm \to \: ( \: v \:  -  \: u \: ) =  at \:  -  \: 0 \\  \\  \rm \to \: v \:  = u \:  +  \: at

  \rm \to \: 2) =  {v}^{2}  =  {u}^{2} + 2as \\  \\  \rm \to \: from \: first \: equation \: of \: motion \\  \\  \rm \to \: v \:  = u \:  + at \\  \\ \rm \to \: t \:  =  \frac{v \:  -  \: u}{a}   \\  \\  \rm \to \: from \: second \: equation \: of \: motion \\  \\  \rm \to \: s \:  = ut \:  +  \:  \frac{1}{2} a {t}^{2}  \\  \\  \rm \to \: s \:  = u \: ( \frac{v \:  -  \: u}{a} ) +  \frac{1}{2} a( \frac{v \:  -  \: u}{a} ) \\  \\  \rm \to \: 2as \:  = 2u \: ( \: v \:  -  \: u \: ) +  \: ( \: v \:  -  \: u \: ) {}^{2}  \\  \\  \rm \to \: 2as \:  = 2vu \:  - 2 {u}^{2}  +  {v}^{2}  +  {u}^{2}  - 2vu \\  \\  \rm \to \: 2as \:  =  \:  {v}^{2}  -  \:  {u}^{2}  \\  \\  \rm \to \:  {v}^{2}  =  {u}^{2}  +  \: 2as

Similar questions