Physics, asked by savan864, 7 months ago

derive the equation of motion using graphical method (v*-u*=2as​

Answers

Answered by Blossomfairy
54

Correct Question :

Derive the equation of motion using graphical method v² = u² + 2as

Answer :

To prove :

  • v² = u² + 2as

Proof :

\mapsto\sf{s = Area \: of \: trapezium \: OABCD} \\   \\  \mapsto \sf{s =  \dfrac{1}{2} \big(sum \: of \parallel  side  \big) \times height} \\  \\  \sf \mapsto{s =  \frac{1}{2} \big(OA + BD) \times OD } \\  \\  \mapsto \sf{s =  \frac{1}{2} \big(u + v \big) \times t } \\  \\  \mapsto \sf{ s = \frac{1}{2} \big(u + v \big)  \times  \big( \frac{v - u}{a}  \big)} \\  \\  \mapsto \sf{s =  \frac{ {v}^{2} -  {u}^{2}  }{2a} } \\   \\  \sf \mapsto{ {v}^{2}  -  {u}^{2} = 2as } \\   \\  \sf \mapsto{ \boxed{ \sf \red{ {v}^{2}  =  {u}^{2} + 2as }}}

_______________....

Other Equations of Motion :

  • v = u + at

  • s = ut + ½ at²

  • v² = u² + 2as

v stands for Final velocity

u stands for Initial velocity

t stands for Time

a stands for Acceleration

s stands for Distance

Attachments:
Answered by Auяoяà
55

Question given,

Derive the equation of motion using graphical method (-u²=2as)

\bf\underline\red{Solution:}

S=ut+\frac{1}{2}a²\:and\:v=u+at,(time\:variant\:t)

S(displacement)=Area of ABCD

S=\frac{1}{2}(AB+CD)(AD)

S=\frac{1}{2}(U+V)(A)

\bf\underline\blue{Solving:}

By using V=u+as

We will get&#x21AAS=\frac{1}{2}(u+u+at)t

&#x21AAS=\frac{1}{2}(2u+at)t

&#x21AAS=ut+\frac{1}{2}at²

&#x21AAS=\frac{1}{2}(u+v)\frac{v-u}{a}

&#x21AAS=\frac{v²-u²}{2a}

&#x21AA\bf\underline\pink{v²=u²+2as}

═════════

нσρє ıт's нєłρƒυł⠀⠀

Attachments:
Similar questions