derive the equation of motion (v=u+at) using graphical method
Answers
Answer:
#Derivation of First Equation of Motion by Graphical Method::::)
Consider the diagram of the velocity-time graph of a body below:
a = Δv/Δt = dv/dt
In this, the body is moving with an initial velocity of u at point A. The velocity of the body then changes from A to B in time t at a uniform rate. In the above diagram, BC is the final velocity, i.e. v after the body travels from A to B at a uniform acceleration of a. In the graph, OC is the time t. Then, a perpendicular is drawn from B to OC, a parallel line is drawn from A to D, and another perpendicular is drawn from B to OE (represented by dotted lines).
Following details are obtained from the graph above:
The initial velocity of the body, u = OA
The final velocity of the body, v = BC
From the graph,BC = BD + DC
So, v = BD + DC
v = BD + OA (since DC = OA)
Finally, v = BD + u (since OA = u) (Equation 1)
Now, since the slope of a velocity-time graph is equal to acceleration a,
So,
a = slope of line AB
a = BD/AD
Since AD = AC = t, the above equation becomes:
BD = at (Equation 2)
Now, combining Equation 1 & 2, the following is obtained:
v = at + u.......
.
.
.
.
.
.
.
## If you find my answer helpful then don't forget to mark it "brainliest".......