Math, asked by gvegito24, 5 months ago

Derive the equations:-


(i) v=u+at
(ii) S=ut+1/2at²

(iii) 2as=v²-u²​

Answers

Answered by hardikmittal447
1

Answer:

This is already there in your text book find it in your chapters

Answered by ÚɢʟʏÐᴜᴄᴋʟɪɴɢ1
39

★Question :

Derive the equations:-

(i) v=u+at

(ii) S=ut+1/2at²

(iii) 2as=v²-u²

 \\

★⦋Answer⦌:

 (i) Consider \:  \:  a \:  \:  body  \:  \: having  \:  \: initial  \:  \: velocity \:  \:  'u'. \:  \:  Suppose  \:  \: it  \:  \: is  \:  \: subjected  \:  \: to  \:  \: a  \:  \: uniform \:  \:  acceleration \:  \:  'a'  \:  \: so  \:  \: that \:  \:  after \:  \:  time  \:  \: 't' \:  \:  its \:  \:  final \:  \:  velocity \:  \:  becomes \:  \:  'v'. Now,  \:  \: from the  \:  \: definition \:  \:  of \:  \:  acceleration \:  \:  we  \:  \: know  \:  \: that: </p><p></p><p>Acceleration =Time \:  \:  taken \:  \: Change  \:  \: in  \:  \: velocity \:  \: </p><p></p><p>   \: or Acceleration = \:  \: time \:  \:  taken \:  \: Final  \:  \: velocity- Initial  \:  \: velocity</p><p> \: </p><p> \:  \: So, a=tv−u</p><p></p><p> \:  \:  at=v−u</p><p> \: and, v=u+at  \:  \: </p><p>where  \:  \: v=  \: final \:  \:  velocity  \:  \: of \:  \:  the  \:  \: body \:  \: </p><p>u= initial \:  \:  velocity  \:  \: of  \:  \: the \:  \:  body \:  \: </p><p> \:  \: a= acceleration</p><p> \:  \: and \:  \:  t= time  \:  \: taken  \:  \: </p><p></p><p> \: (b) Initial \:  \:  velocity,  \:  \: u=54km/ \:  \: h=15m/s \:  \: </p><p>Final  \:  \: velocity, \:  \:  v=0m/s \:  \: </p><p>Time, t=8s</p><p> \:  \: Acceleration, a=?</p><p></p><p> \:  \: a=tv−u=80−15=8−15m/s2=−1.875m/s2 </p><p></p><p>

 \\  \\

(ii) There are in fact just TWO dynamics equations

Acceleration = Velocity Change / Time

Or: a=(v-u)/t more usually written as v=u+at

and Distance = Average Speed X Time

s = t (u+v)/2 usually written as that.

If you substitute for v from Eq.1 into Eq.2 you get

s = t(u + u+at)/2

which simplifies s = t (2u + at)/2

and goes further to s = ut + at²/2

The other suvat equations are derived by substitution in the same way, giving

v² = u² + 2as

s = vt - 1/2 at²

You could also sketch the v-t graph (a trapezium) and work out its area (a rectangle plus a triangle) and get

s = ut [the rectangle, base=t and height=u] + 1/2 t at [the triangle base=t and height=at]

 \\  \\

We know that,

dv⃗ dt=a⃗

Multiplying and dividing LHS by ds⃗

⟹dv⃗  \: ds⃗  \: ds⃗  \: dt=a⃗  </p><p>

We replace ds⃗ dt with v⃗ to get

v⃗ dv⃗ ds⃗ =a⃗

⟹v⃗ dv=a⃗ ds

We know that at S=0,V=u and at S=s,V=v ,

Integrating both sides with appropriate limits:

⟹∫vuvdv=∫s0ads

⟹v22|vu=as|s0

⟹v22−u22=a(s−0)

⟹v2−u22=as

⟹v2−u2=2as

⟹v2=u2+2as

Or more appropriately,

v⃗ ⋅v⃗ =u⃗ ⋅u⃗ +2a⃗ ⋅s

 \\  \\

Similar questions