Derive the expression for magnetic energy stored in a solenoid
Answers
Answered by
7
HERE IS YOUR ANSWER:-
$\frac{dW}{dt}=\left| \varepsilon \right|$
$I=\left[ LI\frac { dI }{ dt } \right]$
$dW=LIdI$
Total amount of work done
$\int{dW=\int{LIdI}}$
$W=\frac{1}{2}L{{I}^{2}}$
For the solenoid:
Inductance, $L={{\mu }{0}}{{n}^{2}}Al$ ;
$B={{\mu }{0}}nI$
$\therefore W={{U}{B}}=\frac{1}{2}L{{I}^{2}}$
$=\frac { 1 }{ 2 } ({ \mu { 0 } }{ n^{ 2 } }Al){ \left[ { \frac { B }{ { { \mu { 0 } }n } } } \right] ^{ 2 } }$
$=\frac{{{B}^{2}}Al}{2{{\mu }{0}}}$
Magnetic energy per unit volume
$=\frac{{{B}^{2}}}{2{{\mu }{0}}}$
Also, Electrostatic energy stored per unit volume
$=\frac{1}{2}{{\varepsilon }{0}}{{E}^{2}}$
HOPE HELPS ✌️
Similar questions
English,
7 months ago
Math,
7 months ago
Computer Science,
7 months ago
Physics,
1 year ago
Chemistry,
1 year ago