Derive the expression for the kinetic and potential energy of harmonic oscillator.Hence show that total energy is conserved in SHM. Draw graphs for (1) energy vs time and (2)energy vs displacement
Answers
Answered by
135
For SHM,
acceleration , a = -ω²y
F = ma = -mω²y
now, work , W = F.dy cos180° { because displacement and acceleration are in opposite direction so, cos180° taken }
W = ∫mω²y.dy = mω²y²/2
use standard form of SHM , y = Asin(ωt ± Ф)
W = mω²A²/2 sin²(ωt ± Ф)
We know, Potential energy is work done stored in system .
so, P.E = W = mω²A²/2 sin²(ωt ± Ф)
again, Kinetic energy , K.E = 1/2mv² , here v is velocity
we know, v = ωAcos(ωt ± Ф)
so, K.E = mω²A²/2cos²(ωt ± Ф)
Total energy = K.E + P.E
= mω²A²/2 cos²(ωt ± Ф) + mω²A²/2 sin²(ωt ± Ф)
= mω²A²/2 [ cos²(ωt ± Ф) + sin²(ωt ± Ф) ] = mω²A²/2 [ ∵sin²α + cos²α = 1]
= mω²A²/2 = constant
Hence, total energy is always constant .
acceleration , a = -ω²y
F = ma = -mω²y
now, work , W = F.dy cos180° { because displacement and acceleration are in opposite direction so, cos180° taken }
W = ∫mω²y.dy = mω²y²/2
use standard form of SHM , y = Asin(ωt ± Ф)
W = mω²A²/2 sin²(ωt ± Ф)
We know, Potential energy is work done stored in system .
so, P.E = W = mω²A²/2 sin²(ωt ± Ф)
again, Kinetic energy , K.E = 1/2mv² , here v is velocity
we know, v = ωAcos(ωt ± Ф)
so, K.E = mω²A²/2cos²(ωt ± Ф)
Total energy = K.E + P.E
= mω²A²/2 cos²(ωt ± Ф) + mω²A²/2 sin²(ωt ± Ф)
= mω²A²/2 [ cos²(ωt ± Ф) + sin²(ωt ± Ф) ] = mω²A²/2 [ ∵sin²α + cos²α = 1]
= mω²A²/2 = constant
Hence, total energy is always constant .
Attachments:
Answered by
89
Attachments:
Similar questions
Math,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Science,
1 year ago