derive the expression for the transformation
for the accleration of
partical
Answers
Step-by-step explanation:
Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy-momentum tensor (which is mainly determined by mass). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.[1]
One can derive transformation formulas for ordinary accelerations in three spatial dimensions (three-acceleration or coordinate acceleration) as measured in an external inertial frame of reference, as well as for the special case of proper acceleration measured by a comoving accelerometer. Another useful formalism is four-acceleration, as its components can be connected in different inertial frames by a Lorentz transformation. Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion. Eventually, it is also possible to describe these phenomena in accelerated frames in the context of special relativity, see Proper reference frame (flat spacetime). In such frames, effects arise which are analogous to homogeneous gravitational fields, which have some formal similarities to the real, inhomogeneous gravitational fields of curved spacetime in general relativity. In the case of hyperbolic motion one can use Rindler coordinates, in the case of uniform circular motion one can use Born coordinates.
Concerning the historical development, relativistic equations containing accelerations can already be found in the early years of relativity, as summarized in early textbooks by Max von Laue (1911, 1921)[2] or Wolfgang Pauli (1921).[3] For instance, equations of motion and acceleration transformations were developed in the papers of Hendrik Antoon Lorentz (1899, 1904),[H 1][H 2] Henri Poincaré (1905),[H 3][H 4] Albert Einstein (1905),[H 5] Max Planck (1906),[H 6] and four-acceleration, proper acceleration, hyperbolic motion, accelerating reference frames, Born rigidity, have been analyzed by Einstein (1907),[H 7] Hermann Minkowski (1907, 1908),[H 8][H 9] Max Born (1909),[H 10] Gustav Herglotz (1909),[H 11][H 12] Arnold Sommerfeld (1910),[H 13][H 14] von Laue (1911),[H 15][H 16] Friedrich Kottler (1912, 1914),[H 17] see section on history.