Physics, asked by nirman95, 2 months ago

Derive the expression of ELECTROSTATIC FIELD INTENSITY for an infinitely long wire containing charge "q".

Show the solution without using Gauss's Law.

#Revision Q12​


nirman95: because you are giving incorrect answers. I have clearly mentioned not to use Gauss Law. Also you are simply copying and pasting from the internet
nirman95: And please remember that your account will receive a ban if you continue copying answers from the internet. So be careful from next time
nirman95: If you see copied answers, please report those content. They will be checked for plagiarism and will be deleted if found copied.

Answers

Answered by RockingStarPratheek
45

\underline{\underline{\sf{\maltese\:\:Question}}}

  • Derive the expression of Electrostatic Field Intensity for an infinitely long wire containing charge \sf{q}

\underline{\underline{\sf{\maltese\:\:Answer}}}

  • Expression of Electrostatic Field Intensity for an infinitely long wire containing charge \sf{q} = \sf{\lambda/2 \pi \varepsilon_{0} d}

\underline{\underline{\sf{\maltese\:\:Explanation}}}

Consider the figure below, (Refer to Attachment)

  • Consider a small element on the wire of length \sf{dx}. Charge on the element is, \sf{d q=\lambda d x}

Electric field due to the small element is,

\to\sf{\displaystyle d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}}

\to\sf{\displaystyle d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{d^{2}+x^{2}}}

Total electric field at the given point is only due to perpendicular components since parallel components get cancelled. Therefore,

\to\sf{\displaystyle E=\int_{-\infty}^{\infty} d E \cos \theta}

\to\sf{\displaystyle E=\int_{-\infty}^{\infty} \frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{d^{2}+x^{2}} \cos \theta}

\to\sf{\displaystyle E=\int_{-\infty}^{\infty} \frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{d^{2}+x^{2}}\left(\frac{d}{\sqrt{d^{2}+x^{2}}}\right)}

\to\sf{\displaystyle E=\frac{\lambda d}{4 \pi \varepsilon_{0}} \int_{-\infty}^{\infty} \frac{d x}{\left[d^{2}+x^{2}\right]^{\frac{3}{2}}}}

\rule{315}{1}

First Let us Simplify \sf{\displaystyle\int_{-\infty}^{\infty} \frac{d x}{\left[d^{2}+x^{2}\right]^{\frac{3}{2}}}}

  • Compute the Indefinite Integral

---\longrightarrow Apply Trigonometric Substitution : \sf{x = d\tan(u)}

-\longrightarrow So dx = \sf{d\sec ^2\left(u\right)du}

\sf{\displaystyle=\int \frac{1}{\left(d^2+\left(d\tan \left(u\right)\right)^2\right)^{\frac{3}{2}}}d\sec ^2\left(u\right)du}

\sf{\displaystyle =\int \frac{1}{d^2\sec \left(u\right)}du}

---\longrightarrow Take the Constant Out : \sf{\int a \cdot f(x) d x=a \cdot \int f(x) d x}

\sf{\displaystyle =\frac{1}{d^2}\cdot \int \frac{1}{\sec \left(u\right)}du}

---\longrightarrow Use the following identity : \sf{1/\sec(x)=\cos(x)}

\sf{\displaystyle=\frac{1}{d^2}\cdot \int \cos \left(u\right)du}

---\longrightarrow Use the common integral : \sf{\int \cos (u) d u=\sin (u)}

\sf{\displaystyle=\frac{1}{d^2}\sin \left(u\right)}

---\longrightarrow Substitute back \sf{u=\arctan \left((1/d)x\right)}

\sf{\displaystyle=\frac{1}{d^2}\sin \left(\arctan \left(\frac{1}{d}x\right)\right)}

---\longrightarrow Use the following identity : \sf{\displaystyle\sin \left(\arctan \left(x\right)\right)=\frac{x}{\left(1+x^2\right)^{\frac{1}{2}}}}

\sf{\displaystyle=\frac{1}{d^2}\left(\frac{\frac{1}{d}x}{\left(1+\left(\frac{1}{d}x\right)^2\right)^{\frac{1}{2}}}\right)}

\sf{\displaystyle=\frac{x}{d^2\left(d^2+x^2\right)^{\frac{1}{2}}}}

---\longrightarrow Add a Constant to the Solution

\sf{\displaystyle=\frac{x}{d^2\left(d^2+x^2\right)^{\frac{1}{2}}}+C}

  • Compute the Boundaries

\sf{\displaystyle\int _a^bf\left(x\right)dx=F\left(b\right)-F\left(a\right)=\lim _{x\to \:b-}\left(F\left(x\right)\right)-\lim _{x\to \:a+}\left(F\left(x\right)\right)}

\bullet\:\:\sf{\displaystyle\lim _{x \rightarrow-\infty}\left(\frac{x}{d^{2}\left(d^{2}+x^{2}\right)^{\frac{1}{2}}}\right)=-\frac{1}{d^{2}}}

\bullet\:\:\sf{\displaystyle\lim _{x \rightarrow \infty}\left(\frac{x}{d^{2}\left(d^{2}+x^{2}\right)^{\frac{1}{2}}}\right)=\frac{1}{d^{2}}}

\sf{\displaystyle=\frac{1}{d^2}-\left(-\frac{1}{d^2}\right)}

\sf{\displaystyle=\frac{1}{d^2}+\frac{1}{d^2}}

\sf{\displaystyle=\frac{2}{d^2}}

\rule{315}{1}

\to\sf{\displaystyle E=\left(\frac{\lambda d}{4 \pi_{\varepsilon_{0}}}\right)\left(\frac{2}{d^{2}}\right)}

\to\sf{\displaystyle E=\frac{\lambda d}{4\pi _{\varepsilon_0}}\cdot \frac{2}{d^2}}

\to\sf{\displaystyle E=\frac{\lambda d\cdot \:2}{4\pi _{\varepsilon_0}d^2}}

\to\sf{\displaystyle E=\frac{\lambda d}{2\pi _{\varepsilon_0}d^2}}

\boxed{\boxed{\to\sf{\displaystyle E=\frac{\lambda}{2 \pi \varepsilon_{0} d}}}}

Attachments:

Anonymous: Fantastic..!!
RockingStarPratheek: Thankies :)
thapaavinitika6765: Awesome
ashrinivasr: Impressive !
RockingStarPratheek: Thank You @thapaavinitika6765 :)
RockingStarPratheek: Thank You @ashrinivasr :D
Anonymous: Kamal kar dia bhaiya
Anonymous: Nice
Anonymous: Outstanding :')
nirman95: Nice !
Answered by amansharma264
41

EXPLANATION.

Electric field intensity for an infinitely long wire containing charge ''q''.

As we know that, the formula.

⇒ Eₓ = kλ/d[Sin∅₁ + Sin∅₂].

⇒ Ey = kλ/d[Cos∅₁ - Cos∅₂].

As we know that,

In infinitely long wire ∅ varies from ∞ to ∞.

⇒ ∅₁ = 90°

⇒ ∅₂ = 90°.

E(net) = [E₁ + E₂].

⇒ Eₓ = kλ/d [ Sin90° + Sin90°].

⇒ Eₓ = kλ/d [1 + 1].

⇒ Eₓ = 2kλ/d.

⇒ Ey = kλ/d [ Cos90° - Cos90°].

⇒ Ey = kλ/d [ 0 - 0 ].

⇒ Ey = 0.

⇒ E(net) = E₁ + E₂.

⇒ E(net) = 2kλ/d + 0.

⇒ E(net) = 2kλ/d.

As we know that,

⇒ k = 1/4πε°.

⇒ E(net) = 2λ/4πε°d.

⇒ E(net) = λ/2πε°d.

Attachments:

BrainlyShadow01: Awesome Bro
ʙʀᴀɪɴʟʏᴡɪᴛᴄh: Awesome!
Anonymous: Perfecta as always :) :fab_wow_clap: ♥️
Anonymous: Great..!!
Anonymous: fantastic
nirman95: Please try not to use direct expressions. Because it won't help students to understand.
nirman95: Please correct the epsilon⁰ to epsilon_(0)
ItzArchimedes: Fabulous !
Anonymous: Speechless answer ✌
Similar questions