Physics, asked by aryangupta6262, 9 months ago

Derive the following formula for a body moving with uniform acceleration (a) V=u+at (b) S=u+1/2 at²​

Answers

Answered by Anonymous
21

 \large\bf\underline {To \: find:-}

  • we need to derive the first equation of motion and second equation of motion.

 \large\bf\underline{Given:-}

  • A body moving with uniform acceleration.

 \huge\bf\underline{Derivation:-}

First equation of motion :-

  • v = u + at

we know that,

Acceleration = Change in Velocity/Time taken

\dashrightarrow \:  \:  \:  \:  \tt \:  a =  \frac{v - u}{t}

\dashrightarrow  \:  \:  \:  \:  \tt \: at \:  = v - u

\dashrightarrow \:  \:  \:  \:  \tt \:at - v =  - u

\dashrightarrow \:  \:  \:  \:  \tt \: - v =  - u - at

\dashrightarrow \:  \:  \:  \:  \tt \: - v =  - (u + at)

 \:  \:  \:  \:  \:  \:  \red{ \underline{ \boxed{ \tt \:v = u + at}}}

Now,

Second Equation of motion:-

  • S = ut + ½at²

we know that,

Average velocity = (v + u)/2

  • A = (v + u)/2

Distance travelled = Average velocity × time

\dashrightarrow \:  \:  \:  \:  \tt \:s = ( \frac{v + u}{2} ) \times t

putting v = u + at first equation of motion.

\dashrightarrow \:  \:  \:  \:  \tt \:s = (  \frac{u + at + u}{2} ) \times t

\dashrightarrow \:  \:  \:  \:  \tt \:s =  (\frac{2u + at}{2} ) \times t

\dashrightarrow \:  \:  \:  \:  \tt \: s = \frac{2ut}{2}  +  \frac{at {}^{2} }{2}

\dashrightarrow \:  \:  \:  \:  \tt \:s = ut +  \frac{at {}^{2} }{2}

 \red{ \underline{ \boxed{ \bf \: s = ut +  \frac{1}{2}a {t}^{2}  }}}

━━━━━━━━━━━━━━━━━━━━━━━

Similar questions