Physics, asked by rafiamughal343, 7 months ago

Derive the formula for an electric field due to an electric dipole, at a point which lies at an axial line.

Answers

Answered by prashudwivedi54
2

hyy mate!!!

what's up???

Answered by nirman95
1

To derive:

The formula for an electric field due to an electric dipole, at a point which lies at an axial line.

Derivation:

Field intensity due to +q charge at point P:

 \therefore \: E1 =  \dfrac{kq}{ {(r - a)}^{2} }

Field intensity due to -q charge at point P:

 \therefore \: E2 =  \dfrac{kq}{ {(r  +  a)}^{2} }

So, net field intensity:

 \therefore \:  E_{net} =  E1 - E2

 =  >  \:  E_{net} =   \dfrac{kq}{ {(r - a)}^{2} }  -  \dfrac{kq}{ {(r + a)}^{2} }

 =  >  \:  E_{net} =  kq \bigg \{ \dfrac{1}{ {(r - a)}^{2} }  -  \dfrac{1}{ {(r + a)}^{2} }  \bigg \}

 =  >  \:  E_{net} =  kq \bigg \{ \dfrac{ {(r + a)}^{2} -  {(r - a)}^{2}  }{ {(r - a)}^{2}  {(r + a)}^{2} }  \bigg \}

 =  >  \:  E_{net} =  kq \bigg \{ \dfrac{ 4ra }{ {(r - a)}^{2}  {(r + a)}^{2} }  \bigg \}

 =  >  \:  E_{net} =  kq \bigg \{ \dfrac{ 4ra }{  {( {r}^{2}  -  {a}^{2} )}^{2} }\bigg \}

 =  >  \:  E_{net} = \dfrac{ 4rakq }{  {( {r}^{2}  -  {a}^{2} )}^{2} }

 =  >  \:  E_{net} = \dfrac{ 2k(2qa)r }{  {( {r}^{2}  -  {a}^{2} )}^{2} }

 =  >  \:  E_{net} = \dfrac{ 2kMr }{  {( {r}^{2}  -  {a}^{2} )}^{2} }

[M = Dipole Moment]

Putting value of Coulomb's Constant:

 =  >  \:  E_{net} = \dfrac{ 2Mr }{4\pi\epsilon_{0}  {( {r}^{2}  -  {a}^{2} )}^{2} }

So, final answer is:

 \boxed{ \bold{\:  E_{net} = \dfrac{ 2Mr }{4\pi\epsilon_{0}  {( {r}^{2}  -  {a}^{2} )}^{2} }}}

Attachments:
Similar questions