Physics, asked by prem298, 1 month ago

Derive the formula for the fringe width in young double slit experiment

Answers

Answered by nirman95
2

To derive:

Fringe Width in YDSE:

Solution:

In YDSE , we can say :

Position of n^{th} bright fringe:

 \rm d_{1} =  \dfrac{n \lambda D}{d}  \:  \:  \:  \: . \: . \: . \: .(1)

Now, position of (n+1)^{th} bright fringe:

 \rm d_{2} =  \dfrac{(n + 1) \lambda D}{d}  \:  \:  \:  \: . \: . \: . \: .(2)

So, fringe width will be distance between adjacent bright fringes:

 \rm  \beta  =  d_{2} -  d_{1}

  \rm \implies  \beta  =   \dfrac{(n + 1) \lambda D}{d}  - \dfrac{n \lambda D}{d}

  \rm \implies  \beta  =   \dfrac{\lambda D}{d}

So, final answer is :

  \boxed{ \bf  \beta  =   \dfrac{\lambda D}{d}}

Answered by Anonymous
0

To Derive:

The formula for the fringe width in young doubt slit experiment (YDSE).

Solution:

We know that,

Position of \sf n^{th} bright fringe is:

\qquad \qquad \sf d_1 = \dfrac{n \lambda D}{d} \ . \ . \ . (i)

Also,

Position of \sf (n + 1)^{th} bridge fringe is:

\qquad \qquad \sf d_2 = \dfrac{(n+1) \lambda D}{d} . \ . \ . (ii)

Therefore,

Fridge width = Distance between adjacent bridge fringes:

\qquad \quad \longrightarrow \sf \beta = d_2 - d_1

\qquad \quad \longrightarrow \sf \beta = \dfrac{(n-1) \lambda D}{d} - \dfrac{n \lambda D}{d}

\qquad \quad \longrightarrow \sf \beta = \dfrac{\lambda D}{d}

Hence:

\qquad \qquad \dag {\red{\underline{\boxed{\sf \beta = \dfrac{\lambda D}{d}}}}}

Similar questions