Derive the formula of motion in graphical method. v=u+at ,s=ut+1/2at2, 2as=v2-u2
Answers
Graphical Derivation of First Equation
Consider an object moving with a uniform velocity u in a straight line. Let it be given a uniform acceleration a at time t = 0 when its initial velocity is u. As a result of the acceleration, its velocity increases to v (final velocity) in time t and S is the distance covered by the object in time t.
The figure shows the velocity-time graph of the motion of the object.
Slope of the v - t graph gives the acceleration of the moving object.
Thus, acceleration = slope = AB =
v - u = at
v = u + at I equation of motion
Graphical Derivation of Second Equation
Distance travelled S = area of the trapezium ABDO
= area of rectangle ACDO + area of DABC
(v = u + at I eqn of motion; v - u = at)
Graphical Derivation of Third Equation
S = area of the trapezium OABD.
Substituting the value of t in equation (1) we get,
2aS = (v + u) (v - u)
(v + u)(v - u) = 2aS [using the identity a2 - b2 = (a+b) (a-b)]
v2 - u2 = 2aS III Equation of Motion
Hi mate!
V = u + at
soln.
Consider a body of mass “m” having initial velocity “u”.Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”.
Now we know that:
Acceleration = change in velocity/Time taken
=> Acceleration = Final velocity-Initial velocity / time taken
=> a = v-u /t
=>at = v-u
or v = u + at
This is the first equation of motion.
—————————————-
(2) Second equation of motion:
s = ut + 1/2 at^2
sol.
Let the distance travelled by the body be “s”.
We know that
Distance = Average velocity X Time
Also, Average velocity = (u+v)/2
.: Distance (t) = (u+v)/2 X t …….eq.(1)
Again we know that:
v = u + at
substituting this value of “v” in eq.(2), we get
s = (u+u+at)/2 x t
=>s = (2u+at)/2 X t
=>s = (2ut+at^2)/2
=>s = 2ut/2 + at^2/2
or s = ut +1/2 at^2
This is the 2nd equation of motion.
……………………………………………………………
(3) Third equation of Motion
v^2 = u^2 +2as
sol.
We know that
V = u + at
=> v-u = at
or t = (v-u)/a ………..eq.(3)
Also we know that
Distance = average velocity X Time
.: s = [(v+u)/2] X [(v-u)/a]
=> s = (v^2 – u^2)/2a
=>2as = v^2 – u^2
or v^2 = u^2 + 2as
This is the third equation of motion.
Hope it helps and pls mark it as brainliest.