Math, asked by Vanshita61, 1 year ago

derive the formula of volume of frustum


atharv33: hii

Answers

Answered by yAshay11
3
V1=13A1y

V2=13A2(y−h)
 

V=V1−V2=13A1y−13A2(y−h)

V=13A1y−13A2y+13A2h

V=13[(A1−A2)y+A2h]   →   Equation (1)
 

By similar solids (Click here for more information about Similar Solids):
A2A1=(y−hy)2

√A2A1=1−hy

hy=1−√A2A1=1−√A2√A1

hy=√A1−√A2√A1

yh=√A1√A1−√A2

y=√A1√A1−√A2h=(√A1√A1−√A2×√A1+√A2√A1+√A2)h

y=A1+√A1A2A1−A2h
 

Substitute y to Equation (1),
V=13[(A1−A2)(A1+√A1A2A1−A2h)+A2h]

V=13[(A1+√A1A2)h+A2h]

V=13[A1+√A1A2+A2]h

V=h3[A1+A2+√A1A2]


Vanshita61: thank you for this nice answer
Answered by priyashiju
1

The formula for frustum of a pyramid or frustum of a cone is given by
 

V=h3[A1+A2+A1A2−−−−−]V=h3[A1+A2+A1A2]

 

Where:
h = perpendicular distance between A1 and A2 (h is called the altitude of the frustum)
A1 = area of the lower base
A2 = area of the upper base
Note that A1 and A2 are parallel to each other.
 

Derivation:
V1=13A1yV1=13A1y

V2=13A2(y−h)V2=13A2(y−h)
 

V=V1V2=13A1y−13A2(y−h)V=V1V2=13A1y−13A2(y−h)

V=13A1y−13A2y+13A2hV=13A1y−13A2y+13A2h

V=13[(A1A2)y+A2h]V=13[(A1A2)y+A2h]   →   Equation (1)
 

By similar solids (Click here for more information about Similar Solids):
A2A1=(y−hy)2A2A1=(y−hy)2

A2A1−−−=1−hyA2A1=1−hy

hy=1−A2A1−−−=1−A2−−−A1−−−hy=1−A2A1=1−A2A1

hy=A1−−−A2−−−A1−−−hy=A1A2A1

yh=A1−−−A1−−−A2−−−yh=A1A1A2

y=A1−−−A1−−−A2−−−h=(A1−−−A1−−−A2−−−×A1−−−+A2−−−A1−−−+A2−−−)hy=A1A1A2h=(A1A1A2×A1+A2A1+A2)h

y=A1+A1A2−−−−−A1A2hy=A1+A1A2A1A2h
 

Substitute y to Equation (1),
V=13[(A1A2)(A1+A1A2−−−−−A1A2h)+A2h]V=13[(A1A2)(A1+A1A2A1A2h)+A2h]

V=13[(A1+A1A2−−−−−)h+A2h]V=13[(A1+A1A2)h+A2h]

V=13[A1+A1A2−−−−−+A2]hV=13[A1+A1A2+A2]h

V=h3[A1+A2+A1A2−−−−−]

Vanshita61: thank you so much priya
Similar questions