derive the formula of volume of frustum
Answers
V2=13A2(y−h)
V=V1−V2=13A1y−13A2(y−h)
V=13A1y−13A2y+13A2h
V=13[(A1−A2)y+A2h] → Equation (1)
By similar solids (Click here for more information about Similar Solids):
A2A1=(y−hy)2
√A2A1=1−hy
hy=1−√A2A1=1−√A2√A1
hy=√A1−√A2√A1
yh=√A1√A1−√A2
y=√A1√A1−√A2h=(√A1√A1−√A2×√A1+√A2√A1+√A2)h
y=A1+√A1A2A1−A2h
Substitute y to Equation (1),
V=13[(A1−A2)(A1+√A1A2A1−A2h)+A2h]
V=13[(A1+√A1A2)h+A2h]
V=13[A1+√A1A2+A2]h
V=h3[A1+A2+√A1A2]
The formula for frustum of a pyramid or frustum of a cone is given by
Where:
h = perpendicular distance between A1 and A2 (h is called the altitude of the frustum)
A1 = area of the lower base
A2 = area of the upper base
Note that A1 and A2 are parallel to each other.
Derivation:
V1=13A1yV1=13A1y
V2=13A2(y−h)V2=13A2(y−h)
V=V1−V2=13A1y−13A2(y−h)V=V1−V2=13A1y−13A2(y−h)
V=13A1y−13A2y+13A2hV=13A1y−13A2y+13A2h
V=13[(A1−A2)y+A2h]V=13[(A1−A2)y+A2h] → Equation (1)
By similar solids (Click here for more information about Similar Solids):
A2A1=(y−hy)2A2A1=(y−hy)2
A2A1−−−√=1−hyA2A1=1−hy
hy=1−A2A1−−−√=1−A2−−−√A1−−−√hy=1−A2A1=1−A2A1
hy=A1−−−√−A2−−−√A1−−−√hy=A1−A2A1
yh=A1−−−√A1−−−√−A2−−−√yh=A1A1−A2
y=A1−−−√A1−−−√−A2−−−√h=(A1−−−√A1−−−√−A2−−−√×A1−−−√+A2−−−√A1−−−√+A2−−−√)hy=A1A1−A2h=(A1A1−A2×A1+A2A1+A2)h
y=A1+A1A2−−−−−√A1−A2hy=A1+A1A2A1−A2h
Substitute y to Equation (1),
V=13[(A1−A2)(A1+A1A2−−−−−√A1−A2h)+A2h]V=13[(A1−A2)(A1+A1A2A1−A2h)+A2h]
V=13[(A1+A1A2−−−−−√)h+A2h]V=13[(A1+A1A2)h+A2h]
V=13[A1+A1A2−−−−−√+A2]hV=13[A1+A1A2+A2]h
V=h3[A1+A2+A1A2−−−−−√]