Derive the given formula of sum of A.P:- Sn=n/2[2a+(n-1)d].
Answers
Answered by
3
S=a1+a2+a3+a4+...+an
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d]S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d]S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)2S=n(a1+an)
S=n2(a1+an)S=n2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n2{a1+[a1+(n−1)d]}S=n2{a1+[a1+(n−1)d]}
S=n2[2a1+(n−1)d]S=n2[2a1+(n−1)d]
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d]S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d]S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)2S=n(a1+an)
S=n2(a1+an)S=n2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n2{a1+[a1+(n−1)d]}S=n2{a1+[a1+(n−1)d]}
S=n2[2a1+(n−1)d]S=n2[2a1+(n−1)d]
Anonymous:
my pleasure dear
Answered by
5
Let Sn = Sum of 'n' terms, then,
Sn = a + (a+d) + (a+2d) + (a+3d) + ...+ a+(n-1)d
Let l = last term, then,
Sn = a + (a+d) + (a+2d) + (a+3d) + ...+ (l-3d) + (l -2d) + (l - d) + l
reversing the order of this gives:
Sn = l + (l-d) + (l-2d) + (l-3d) + ...+ (a+3d) + (a +2d) + (a + d) + a
Adding these last two equations gives,
2*Sn = a+l + (a+l) + (a+l) + (a+l) + ...+ (a+l) + (a+l) + (a+l) + a+l
2*Sn = (a+l) to n terms
2*Sn = (a+l)*n
Sn = n/2*(a+l)
but l = a+(n-1)d, so substituting this gives:
Sn = n/2*(2a+(n-1)d)
Similar questions