History, asked by ananya4515, 2 months ago

Derive the moment of inertia of

(i)Thin,uniform spherical shell
(ii)Solid,uniform sphere

Explain each step and with proper explanation with correct integration​

Answers

Answered by kishanjnv0
1

Answer:

(i) Moment of Inertia of a Thin Uniform Spherical Shell

Consider a thin uniform spherical shell of radius \sf{R}R and mass \sf{M}M (Figure 1). Consider an elemental ring of radius \sf{r}r and mass \sf{dM}dM whose center is at a distance \sf{x}x from the center of the shell.

Here \sf{dl}dl is edge width of ring which subtends an angle \sf{d\theta}dθ at center of the shell. So,

\sf{\longrightarrow dl=R\ d\theta}⟶dl=R dθ

From the triangle,

\sf{\longrightarrow r=R\sin\theta}⟶r=Rsinθ

The surface area of the ring,

\sf{\longrightarrow dA=2\pi r\ dl}⟶dA=2πr dl

\sf{\longrightarrow dA=2\pi R^2\sin\theta\ d\theta}⟶dA=2πR

2

sinθ dθ

Since the shell is uniform,

\sf{\longrightarrow\dfrac{M}{A}=\dfrac{dM}{dA}}⟶

A

M

=

dA

dM

\sf{\longrightarrow dM=\dfrac{M}{4\pi R^2}\cdot2\pi R^2\sin\theta\ d\theta}⟶dM=

4πR

2

M

⋅2πR

2

sinθ dθ

\sf{\longrightarrow dM=\dfrac{1}{2}\,M\sin\theta\ d\theta}⟶dM=

2

1

Msinθ dθ

The moment of inertia of the ring about an axis passing through its center and perpendicular to the plane is,

\sf{\longrightarrow dI=dM\cdot r^2}⟶dI=dM⋅r

2

\sf{\longrightarrow dI=\dfrac{1}{2}\,M\sin\theta\ d\theta\,(R\sin\theta)^2}⟶dI=

2

1

Msinθ dθ(Rsinθ)

2

\sf{\longrightarrow dI=\dfrac{1}{2}\,MR^2\sin^3\theta\ d\theta}⟶dI=

2

1

MR

2

sin

3

θ dθ

Then the moment of inertia of the whole shell is,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\int\limits_0^{\pi}\sin^3\theta\ d\theta}⟶I=

2

1

MR

2

0

π

sin

3

θ dθ

Solving the integral,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\int\limits_0^{\pi}\sin^2\theta\cdot\sin\theta\ d\theta}⟶

0

π

sin

3

θ dθ=

0

π

sin

2

θ⋅sinθ dθ

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_0^{\pi}\left(1-\cos^2\theta\right)\cdot-\sin\theta\ d\theta}⟶

0

π

sin

3

θ dθ=−

0

π

(1−cos

2

θ)⋅−sinθ dθ

Take \sf{u=\cos\theta.}u=cosθ. Then,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)\ du}⟶

0

π

sin

3

θ dθ=−

1

−1

(1−u

2

) du

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\dfrac{4}{3}}⟶

0

π

sin

3

θ dθ=

3

4

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\cdot\dfrac{4}{3}}⟶I=

2

1

MR

2

3

4

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{3}\,MR^2}}}⟶

I=

3

2

MR

2

(ii) Moment of Inertia of a Solid Uniform Sphere

Consider a solid uniform sphere of radius \sf{R}R and mass \sf{M}M (Figure 2). Consider an elemental disc of radius \sf{r}r and mass \sf{dM}dM whose center is at a distance \sf{x}x from the center of the shell.

From the triangle,

\sf{\longrightarrow x=R\cos\theta}⟶x=Rcosθ

\sf{\longrightarrow dx=-R\sin\theta\ d\theta}⟶dx=−Rsinθ dθ

and,

\sf{\longrightarrow r=R\sin\theta}⟶r=Rsinθ

Volume of disc,

\sf{\longrightarrow dV=\pi r^2\ dx}⟶dV=πr

2

dx

\sf{\longrightarrow dV=-\pi R^3\sin^3\theta\ d\theta}⟶dV=−πR

3

sin

3

θ dθ

Since the sphere is uniform,

\sf{\longrightarrow\dfrac{M}{V}=\dfrac{dM}{dV}}⟶

V

M

=

dV

dM

\sf{\longrightarrow dM=\dfrac{M}{\dfrac{4}{3}\pi R^3}\cdot -\pi R^3\sin^3\theta\ d\theta}⟶dM=

3

4

πR

3

M

⋅−πR

3

sin

3

θ dθ

\sf{\longrightarrow dM=-\dfrac{3}{4}\,M\sin^3\theta\ d\theta}⟶dM=−

4

3

Msin

3

θ dθ

Moment of inertia of the disc about an axis passing through its center and perpendicular to the plane is,

\displaystyle\sf{\longrightarrow dI=\dfrac{1}{2}\,dM\cdot r^2}⟶dI=

2

1

dM⋅r

2

\sf{\longrightarrow dI=-\dfrac{3}{8}\,M\sin^3\theta\ d\theta\cdot(R\sin\theta)^2}⟶dI=−

8

3

Msin

3

θ dθ⋅(Rsinθ)

2

\sf{\longrightarrow dI=-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta}⟶dI=−

8

3

MR

2

sin

5

θ dθ

Then moment of inertia of the whole sphere will be,

\displaystyle\sf{\longrightarrow I=\int\limits_{\pi}^0-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta }⟶I=

π

0

8

3

MR

2

sin

5

θ dθ

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\int\limits_0^{\pi}\sin^5\theta\ d\theta }⟶I=

8

3

MR

2

0

π

sin

5

θ dθ

Solving the integral,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\int\limits_0^{\pi}\sin^4\theta\cdot\sin\theta\ d\theta}⟶

0

π

sin

5

θ dθ=

0

π

sin

4

θ⋅sinθ dθ

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_0^{\pi}(1-\cos^2\theta)^2\cdot-\sin\theta\ d\theta}⟶

0

π

sin

5

θ dθ=−

0

π

(1−cos

2

θ)

2

⋅−sinθ dθ

Take \sf{u=\cos\theta.}u=cosθ. Then,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)^2\ du}⟶

0

π

sin

5

θ dθ=−

1

−1

(1−u

2

)

2

du

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\dfrac{16}{15}}⟶

0

π

sin

5

θ dθ=

15

16

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\cdot\dfrac{16}{15}}⟶I=

8

3

MR

2

15

16

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{5}\,MR^2}}}⟶

I=

5

2

MR

2

Answered by devanksheenayak
1

Answer:

above is the correct answer..

Similar questions