Derive the Pythagoras Theorem.
Answers
ᴄᴏɴsɪᴅᴇʀ ᴀ ʀɪɢʜᴛ-ᴀɴɢʟᴇᴅ ᴛʀɪᴀɴɢʟᴇ Δᴀʙᴄ. ғʀᴏᴍ ᴛʜᴇ ʙᴇʟᴏᴡ ғɪɢᴜʀᴇ, ɪᴛ ɪs ʀɪɢʜᴛ-ᴀɴɢʟᴇᴅ ᴀᴛ ʙ.
ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ ᴅᴇʀɪᴠᴀᴛɪᴏɴ -1
ʟᴇᴛ ʙᴅ ʙᴇ ᴘᴇʀᴘᴇɴᴅɪᴄᴜʟᴀʀ ᴛᴏ ᴛʜᴇ sɪᴅᴇ ᴀᴄ.
ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ ᴅᴇʀɪᴠᴀᴛɪᴏɴ -2
ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ-ɢɪᴠᴇɴ ғɪɢᴜʀᴇ, ᴄᴏɴsɪᴅᴇʀ ᴛʜᴇ Δᴀʙᴄ ᴀɴᴅ Δᴀᴅʙ,
ɪɴ Δᴀʙᴄ ᴀɴᴅ Δᴀᴅʙ,
∠ᴀʙᴄ = ∠ᴀᴅʙ = 90°
∠ᴀ = ∠ᴀ → ᴄᴏᴍᴍᴏɴ
ᴜsɪɴɢ ᴛʜᴇ ᴀᴀ ᴄʀɪᴛᴇʀɪᴏɴ ғᴏʀ ᴛʜᴇ sɪᴍɪʟᴀʀɪᴛʏ ᴏғ ᴛʀɪᴀɴɢʟᴇs,
Δᴀʙᴄ ~ Δᴀᴅʙ
ᴛʜᴇʀᴇғᴏʀᴇ, ᴀᴅ/ᴀʙ = ᴀʙ/ᴀᴄ
⇒ ᴀʙ2 = ᴀᴄ x ᴀᴅ ……(1)
ᴄᴏɴsɪᴅᴇʀɪɴɢ Δᴀʙᴄ ᴀɴᴅ Δʙᴅᴄ ғʀᴏᴍ ᴛʜᴇ ʙᴇʟᴏᴡ ғɪɢᴜʀᴇ.
ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ ᴅᴇʀɪᴠᴀᴛɪᴏɴ -3
∠ᴄ = ∠ᴄ → ᴄᴏᴍᴍᴏɴ
∠ᴄᴅʙ = ∠ᴀʙᴄ = 90°
ᴜsɪɴɢ ᴛʜᴇ ᴀɴɢʟᴇ ᴀɴɢʟᴇ(ᴀᴀ) ᴄʀɪᴛᴇʀɪᴏɴ ғᴏʀ ᴛʜᴇ sɪᴍɪʟᴀʀɪᴛʏ ᴏғ ᴛʀɪᴀɴɢʟᴇs, ᴡᴇ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴀᴛ,
Δʙᴅᴄ ~ Δᴀʙᴄ
ᴛʜᴇʀᴇғᴏʀᴇ, ᴄᴅ/ʙᴄ = ʙᴄ/ᴀᴄ
⇒ ʙᴄ2 = ᴀᴄ x ᴄᴅ …..(2)
ғʀᴏᴍ ᴛʜᴇ sɪᴍɪʟᴀʀɪᴛʏ ᴏғ ᴛʀɪᴀɴɢʟᴇs, ᴡᴇ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴀᴛ,
∠ᴀᴅʙ = ∠ᴄᴅʙ = 90°
sᴏ ɪғ ᴀ ᴘᴇʀᴘᴇɴᴅɪᴄᴜʟᴀʀ ɪs ᴅʀᴀᴡɴ ғʀᴏᴍ ᴛʜᴇ ʀɪɢʜᴛ-ᴀɴɢʟᴇᴅ ᴠᴇʀᴛᴇx ᴏғ ᴀ ʀɪɢʜᴛ ᴛʀɪᴀɴɢʟᴇ ᴛᴏ ᴛʜᴇ ʜʏᴘᴏᴛᴇɴᴜsᴇ, ᴛʜᴇɴ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇs ғᴏʀᴍᴇᴅ ᴏɴ ʙᴏᴛʜ sɪᴅᴇs ᴏғ ᴛʜᴇ ᴘᴇʀᴘᴇɴᴅɪᴄᴜʟᴀʀ ᴀʀᴇ sɪᴍɪʟᴀʀ ᴛᴏ ᴇᴀᴄʜ ᴏᴛʜᴇʀ ᴀɴᴅ ᴀʟsᴏ ᴛᴏ ᴛʜᴇ ᴡʜᴏʟᴇ ᴛʀɪᴀɴɢʟᴇ.
ᴛᴏ ᴘʀᴏᴠᴇ: ᴀᴄ2 =ᴀʙ2 +ʙᴄ2
ʙʏ ᴀᴅᴅɪɴɢ ᴇǫᴜᴀᴛɪᴏɴ (1) ᴀɴᴅ ᴇǫᴜᴀᴛɪᴏɴ (2), ᴡᴇ ɢᴇᴛ:
ᴀʙ2 + ʙᴄ2= (ᴀᴄ x ᴀᴅ) + (ᴀᴄ x ᴄᴅ)
ᴀʙ2 + ʙᴄ2 = ᴀᴄ (ᴀᴅ + ᴄᴅ) …..(3)
sɪɴᴄᴇ ᴀᴅ + ᴄᴅ = ᴀᴄ, sᴜʙsᴛɪᴛᴜᴛᴇ ᴛʜɪs ᴠᴀʟᴜᴇ ɪɴ ᴇǫᴜᴀᴛɪᴏɴ (3).
ᴀʙ2 + ʙᴄ2= ᴀᴄ (ᴀᴄ)
ɴᴏᴡ, ɪᴛ ʙᴇᴄᴏᴍᴇs
ᴀʙ2+ ʙᴄ2= ᴀᴄ2
ʜᴇɴᴄᴇ, ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ ɪs ᴘʀᴏᴠᴇᴅ.
ᴍᴀʀᴋ ᴍᴇ ᴀs ʙʀᴀɪɴʟɪᴇsᴛ , ᴀs ᴜʀ ǫᴜᴇsᴛɪᴏɴ sᴀʏs ᴛᴏ ᴅᴇʀɪᴠᴇ. ɪ ʜᴀᴠᴇ ᴘʀᴏᴠᴇᴅ ɪᴛ ...