Math, asked by OpSumanYt, 3 months ago

Derive the relation between Kp and Kc.

Please do not spam !!

Class ⇒ 11.

#Offline​

Answers

Answered by Disha094
3

hope it help more in future so

Attachments:
Answered by ItzBrainlyResponder
15

{\pink{\maltese}}\:\:{\underline{\underline{\textbf{\textsf{\red{To\:Derivate\:}}}}}}:\\

{\quad{\hookrightarrow \:  \: {\underline{\rm{We  \: have \:  to \: derive \:  the \:  relation  \: between \:{\red{\bf{K_p}}}\rm\: and \:  {\red{\bf{K_c}.}}}}}}}\\\\

{\pink{\maltese}}\:\:{\underline{\underline{\textbf{\textsf{\red{Required\:Solution\:}}}}}}:\\

{\pink{\clubsuit }\:  \: {\underline{\sf{Meaning  \: of \:{\red{\bf{K_p}}}\sf \:and \:  {\red{\bf{K_c}}}}}}} :\\

\hookrightarrow \:  \: \rm{They \:  are \:  equilibrium \:  constant \:  and \:  dependent \:  on \qquad}\\  \qquad \rm{partial  \: pressures  \: exerted  \: by \:  the  \: gaseous \:  components.}\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{Definition  \: of \:{\red{\bf{K_p}}}\sf \:and \:  {\red{\bf{K_c}}}}}}} :\\

\hookrightarrow \:  \: {\red{\bf{K_p}}} \:  \to \: \rm{It \:is \:defined \: by \:{\textbf{\textsf{molar\: concentrations.}}}}\\

\hookrightarrow \:  \: {\red{\bf{K_c}}} \:  \to \: \rm{It \:is \:defined \: by \:the\:{\textbf{\textsf{partial\: pressures}}} \: of\:the\:gases\:inside.}\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{For\:a\:general\:reaction\:}}}} :\\

\hookrightarrow \:  \: {\red{\sf{aA \:  +  \: bB \:  \leftrightharpoons \: cC \:  +  \: dD}}}\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{Representation  \: of \:{\red{\bf{K_p}}}}}}} :\\

{\hookrightarrow \:  \: {\red{\bf{K_p}}} \:  \to \: \rm{ \dfrac{[P {}^{c}_C] [P {}^{d}_D]}{[P {}^{a}_A][P {}^{b}_B]}} ---({\boldsymbol{Equation\:1)}}}.\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{Representation  \: of \:{\red{\bf{K_c}}}}}}} :\\

{\hookrightarrow \:  \: {\red{\bf{K_c}}} \:  \to \: \rm{ \dfrac{[C]^c[D]^d}{[A]^a[B]^b}} ---({\boldsymbol{Equation\:2)}}}.\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{Ideal\:Gases\:Equation\:}}}} :\\

{\hookrightarrow \:   \: {\sf{pV = nRT}}}.

{\hookrightarrow \:   \: {\sf{p = \dfrac{n}{V}RT}}}.

{\hookrightarrow \:   \:  { \red{\sf{P = CRT}}}. \:  \:  \lbrack   \rm\because \: Concentration  \:is \: in \:  { \bf{mol \:  L^{-1} }}\:  or  \:{ \bf{ mol \:  dm^{-3}}}\rbrack}

{\pink{\clubsuit }\:  \: {\underline{\sf{Partial\: pressure\:of\:the\:{\red{\bf{reacants}}}\:and\:{\red{\bf{products}}}}}}} :\\

{\hookrightarrow \:   \: {\sf{P {}^{a}_A = [A]^a \cdot[RT]^a}}}

{\hookrightarrow \:   \: {\sf{P {}^{b}_B = [B]^b \cdot[RT]^b}}}

{\hookrightarrow \:   \: {\sf{P {}^{c}_C = [C]^c \cdot[RT]^c}}}

{\hookrightarrow \:   \: {\sf{P {}^{d}_D = [D]^d \cdot[RT]^d}}}

{\pink{\clubsuit }\:  \: {\underline{\sf{\bf{\red{Calculations}}}}}} :\\

{\hookrightarrow \:  \: {\red{\bf{K_p}}} \:  = \: \sf{ \dfrac{[P {}^{c}_C] [P {}^{d}_D]}{[P {}^{a}_A][P {}^{b}_B]}} }.\\

{\bullet \:  \: \rm {Substituting\:the\:Partial\: pressure\:of\:the\:{\red{\bf{reacants}}}\:and\:{\red{\bf{products}}}}:}\\

{\hookrightarrow \:  \: {\red{\bf{K_p}}} \:  = \: \sf{ \dfrac{ [C]^c \cdot[RT]^c[D]^d \cdot[RT]^d}{[A]^a \cdot[RT]^a[B]^b \cdot[RT]^b}} }.

{\hookrightarrow \:  \: {\red{\bf{K_p}}} \:  = \: \sf{  \bigg(\dfrac{[C]^c[D]^d}{[A]^a[B]^b} \bigg)(RT)^{(c + d) - (a + b)} } }.

{\bullet \:  \: \rm {Here,  \:  \bf \Delta n \: \rm is  \: the \:\bf  difference   \rm\: between \: {\sf  the  \: sum \:  of  \: number  \: of \:  moles  \: of  \: products } \: and  \:{ \sf the \:  sum  \: of  \: number  \: of \:moles \: of \:   reactants. }}}\\

{ \hookrightarrow \:  \:    \bf\Delta n =  \sf(the  \: sum \:  of  \: number  \: of \:  moles  \: of  \: products) - (the \:  sum  \: of  \: number  \: of \:moles \: of \:   reactants).}\\

{ \hookrightarrow \:  \:{\bf{\red{\Delta n =  \sf(c+d) - (a+b).}}}}\\

{\bullet \:  \: \rm {\therefore,  \: Substituting\:\bf \Delta n \: \rm and \: \bf Equation \:2:}}\\

{\hookrightarrow \:  \: {\bf{\purple{K_p \:  = \: \sf{K_c(RT)^{\Delta n_{(g)}}}}}}} \:  \:  \bigstar.\\\\

{\pink{\clubsuit }\:  \: {\underline{\sf{\bf{\red{Here}}}}}} :\\

{ \hookrightarrow \:  \:{\bf{P \to  \sf Partial  \: Pressure  \:  \rm(in \:  bar).}}}\\

{ \hookrightarrow \:  \:{\bf{N \to \sf Amount  \: of  \: gas \:  \rm (in mol).}}}\\

{ \hookrightarrow \:  \:{\bf{V \to \sf  Volume \: \rm (in  \: c^3).}}}\\

{ \hookrightarrow \:  \:{\bf{T \to \sf Kelvin  \: Temperature.}}}

{\hookrightarrow \:  \: \bf{R \to \sf Gas  \: Constant  \:  \rm(0.831  \: litre  \: bar \:  K^{-1}  \: mol^{-1}).}}

{\hookrightarrow \:  \: \bf{C \to \sf Concentration \:  \rm (in  \: mol \:  L^{-1} \:  or  \: dm^{-3}).}}

Similar questions