Physics, asked by himanshujio456, 3 days ago

Derive the relationship- [2] Kinetic Energy = ½ mv2 Where m = mass of the body And v = velocity of the body​

Answers

Answered by shashipratapsingh24
75

Answer:

K.E= 1/2mv2

Explanation:

W=F×s --------(1)

from equation of motion

v2-u2=2as

s= (v2-u2)/2a ---------(2)

F= ma --------(3)

substituting (2)&(3) in (1), we get

W= ma×(v2-u2)/2a

W = 1/2m(v2-u2)

(u=0) object start at rest so initial velocity is zero

W = 1/2mv2

hence proof.

Answered by SparklingBoy
159

To Derive :

 \text{K.E.}= \dfrac{1}{2} \text{mv}^{2}

Where,

  • m = Mass of the Body

  • v = Velocity of the Body

----------------------

Derivation :

★ Using Newton's First Law :

  • F = ma - - - - (1)

★ Work Done by Force is given by :

  • W = F.ds - - - - (2)

Putting (2) in (1) :

:\longmapsto\text{W = ma.ds} \\

 \bf:\longmapsto W = ma \times s \:  -  -  -  - (3) \\

★ Using v² - u² = 2as :

  •  \bf s =   \frac{ {v}^{2}  -  {u}^{2} }{2a} - - - - (4)

Putting (4) in (3) :

:\longmapsto\text W = \text{m} \cancel{\text a} \times  \dfrac{ {\text v}^{2} -  {\text u}^{2}  }{2  \: \cancel\text a}  \\

:\longmapsto\text W =  \dfrac{1}{2} \text m( {\text u}^{2}  -  {\text v}^{2}) \\

When initial velocity = u = 0

:\longmapsto\text W =  \dfrac{1}{2}\text {mv} {}^{2}   \\

★ This work is stored as kinetic energy :

Hence,

\Large\underline{\pink{\underline{\frak{\pmb{K.E.=  \dfrac{1}{2}m \bf {v}^{2}  }}}}}

Similar questions