Derive the third law of motion 2as=v2-u2
Answers
Step-by-step explanation:
Here,
- u = Initial Velocity
- v = Final Velocity
- t = Time
- a = Acceleration
- s = Distance
[t = (v-u)/a]
s = ut + 1/2at²
s = u{(v-u)/a} + 1/2a{(v-u)/a}²
s = (uv - u²)/a + (v²+u²-2vu)\2a
s = (2uv - 2u² + v² + u² - 2vu)/2a)
s = (v² - u²)/2a
2as = v² - u²
[NOTE: Dear friend, this is an equation of motion, not a law.]
Consider the velocity-time graph for a body having some non zero initial velocity at time t = 0.
u: velocity at time t1
v: velocity at time t2
a: uniform acceleration of the body along the straight line
Displacement covered during the time interval t2 - t1 = Area ABt1t2
S = Area of triangle ABA’ + Area of rectangle AA’t2t1 = Area of trapezium
S = ½ x Sum of parallel sides x Perpendicular distance
begin mathsize 12px style straight s equals 1 half open parentheses straight v plus straight u close parentheses straight t end style ....... (Equation 1)
From the first equation of motion, v = u + at;
begin mathsize 12px style straight t equals fraction numerator straight v minus straight u over denominator straight a end fraction end style
Substituting in equation 1, we get
begin mathsize 12px style straight s equals 1 half open parentheses straight v plus straight u close parentheses fraction numerator open parentheses straight v minus straight u close parentheses over denominator straight a end fraction end style
or,
v2 – u2 = 2as
which is the required equation of motion.