Physics, asked by sehgalmilan29, 4 months ago

Derive the work energy theorem for a variable force exerted on a body in one dimension. ​

Answers

Answered by shaktisrivastava1234
160

  \huge {\underline {\overline{\boxed {\frak{Answer:}}}}}

 \large \bf{Work \: energy \: theorem \:for\:variable\:force-}

 \sf{Work \: done \: by \: the \: net \: force \: acting} \\  \sf{on \: a \: body \: is \: equal \: to \: the \: changed} \\ \sf{produced \: in \: kinetic \: energy \: of \: the} \\  \sf{body.}

 \longrightarrow \sf{Let \: F \: be \: the \: variable \: force.}

 \sf{∴ Work \: done \: by \: the  \:  variable \: force , }  \\  \sf{W =  \int  \limits_{x_i}^{x_f}F•dx}

 \sf{where \: x_i \: is \: the \: initial \: position \: and \: x_f}

 \sf{is \: the \: final \: position.}

  \bf \underline{{Kinetic \: energy \: of \: an \: object, K= \frac{1}{2} m{v}^{2}  }}

 \longmapsto \sf{ \frac{dK}{dt}  = mv \frac{dv}{dt} }

 \longmapsto \sf{ \frac{dK}{dt}  = ma \frac{dx}{dt} }

 \longmapsto \sf{ \frac{dK}{dt} F\frac{dx}{dt} }

 \longmapsto \sf{{dK} =  F \times {dx}}

 \sf{ \int  \limits_{K_i}^{K_f}dK = \int  \limits_{x_i}^{x_f}F•dx}

  \leadsto\sf{ \triangle{K = W}}

 \sf{Where , {\triangle{K \: is \: the \: change \: in  \:kinetic  \: energy .}}}

____________________________________________

Answered by gayatrikumari99sl
2

Answer:

w = K_{f} -K_{j}

Explanation:

Let a body of mass 'm' moving with a velocity 'u' and a force \vec{F},

body be displaced by \vec{ds} and its speed to 'v '

Now , we know that work done = force × distance travel

dw = \vec{F} . \vec{ds} ...........(i)

and  we also know that

\vec{F} = m . \vec{a}             (where 'm' is mass and 'a 'stand for acceleration )

\vec{F} =  m(\frac{\vec{dv}}{dt} )                    ('a' is \frac{dv}{dt} velocity by time )

Now put the value of \vec{F} in equation (i)

dw =  m(\frac{\vec{dv}}{dt} ). \vec{ds}  which can be written as

dw =  m(\frac{\vec{ds}}{dt} ). \vec{dv}  = m.v.\vec{dv}         (velocity (v) = \frac{ds}{dt})

Now integrate both side ,

\int_{u}^{v}dw = m\int_{u}^{v}v \vec{dv}

⇒ w = m(\frac{v^{2} -u^{2} }{2} )

⇒ w = \frac{1}{2}mv^{2}   - \frac{1}{2}mu^{2}  = K_{f}  - K_{j}

(\frac{1}{2}mv^{2}   - \frac{1}{2}mu^{2} this is called change in kinetic energy .)

So , w = K_{f} -K_{j}

Hence , here we proved the work energy theorem .

#SPJ3

Similar questions