Science, asked by lanation5409, 1 year ago

Derive the working for kinetic energy?

Answers

Answered by jolly4941
0
kinetic energy of body is the energy that it possed due to its motion kinetic energy can be defined as the work needed to accelerate an object of a given mass from rest to its started velocity if the velocity of the body is zero than the kinetic energy will also be zero

jolly4941: given mass from rest to its stated velocity if the velocity of the body is zero than the body i
Answered by saanvigrover2007
0

 \mathfrak{Derivation \: of \:Kinetic \: Energy}

\mathsf{Things \: to \: know \: before\: Derivation}

 \mathsf{\implies Work done = Fs}

 \mathsf{\implies v² = u² + 2as}

 \mathsf{\implies s = \frac{v² - u²}{2a}}

 \mathsf{\implies u = 0 m/s \: for \:a \: body \: starting \: from \: rest}

 \mathsf{\implies Work \: Done = \: Energy}

 \mathsf{\implies Kinetic \: Energy \: is \: also \: written \: as \: E_k}

 \mathsf{\implies Force = mass \: × \: acceleration \: = ma}

\mathsf{Derivation}

 \mathsf{\hookrightarrow E_k = Work done = Fs }

 \mathsf{\hookrightarrow \: = \: Fs \: = ma × s }

 \mathsf{\hookrightarrow E_k = m × \frac{v² - u²}{2a} × a}

 \mathsf{\hookrightarrow E_k = \frac{1}{2}mv²}

Similar questions