derive third equation of motion
Answers
jhbsbsksjsjje
Explanation:
jshksn
Answer:
The third equation of motion : v² - u² = 2as.
Derivation of third equation of motion :
- Algebraic method -
We know, a = (v - u)/t
⇒ t = (v - u)/a
Using second equation of motion :
⇒ s = ut + 1/2 at²
⇒ s = u [(v - u)/a] + 1/2 a[(v - u)/a]²
⇒ s = (uv - u²)/a + a(v² + u² - 2uv)/2a²
⇒ s = (uv - u²)/a + (v² + u² - 2uv)/2a
⇒ s = (2uv - 2u² + v² + u² - 2uv)/2a
⇒ s = (v² - u²)/2a
⇒ 2as = v² - u²
- Calculus Method -
Acceleration = dv/dt
Multiplying ds in numerator and denominator,
[tex]\longrightarrow \tt{a=\dfrac{dv}{dt}\times\dfrac{ds}{ds}} [/tex]
[tex]\longrightarrow \tt{a=\dfrac{dv}{ds}\times\dfrac{ds}{dt}} [/tex]
[tex]\longrightarrow \tt{a=v\dfrac{dv}{ds}}} [/tex]
[tex]\longrightarrow \tt{a\,ds = v\,dv}} [/tex]
[tex]\longrightarrow \tt{\int\limits^s_0 {a} \, ds = \int\limits^v_u {v} \, dv} [/tex]
[tex]\longrightarrow \tt{\int\limits^s_0 {a} \, ds = \bigg[\dfrac{v^2}{2}\bigg]^v_u} [/tex]
[tex]\sf\bigg[By\,using : \int\limits {x}^n \, dx = \dfrac{{x}^{n+1}}{n+1}\bigg]} [/tex]
[tex]\longrightarrow\tt{a[s]^s_0=\dfrac{v^2}{2}-\dfrac{u^2}{2}} [/tex]
[tex]\longrightarrow\tt{a(s-0)=\dfrac{v^2-u^2}{2}} [/tex]
[tex]\longrightarrow\tt{2a(s-0)=v^2-u^2} [/tex]
Hence, 2as = v² - u².