Physics, asked by anindyaadhikari13, 5 months ago

Derive this formula.
 \tt T = 2\pi \sqrt{ \dfrac{l}{g} }
Thank you. :)​

Answers

Answered by itzpagala
9

Explanation:

Explanation:

Let's consider that two consecutive positive integers are x & (x + 1).

\begin{gathered}{\underline{\sf{\bigstar\: According \ to \ the \ given \ Question :}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf x^2 + \Big(x + 1 \Big)^2 = 365 \\\\\\:\implies\sf x^2 + x^2 + 1 + 2x = 365 \\\\\\:\implies\sf 2x^2 + 2x^2 = 365 - 1 \\\\\\:\implies\sf 2x^2 + 2x- 364 = 0 \qquad \bigg\lgroup\sf Taking \ 2 \ common \bigg\rgroup\\\\\\:\implies\sf x^2 + x - 182 = 0 \\\\\\\qquad\qquad\underline{\sf{\purple{\: Using \ splitting \ the \ Middle \ term \ method \ :}}}\\\\\\:\implies\sf x^2 + 14 x - 13x - 182 = 0\\\\\\:\implies\sf x( x + 14) - 13(x + 14) = 0\\\\\\:\implies\sf\pink{(x - 13) (x + 14) = 0}\\\\\\:\implies\sf x - 13 = 0 \\\\\\:\implies\boxed{\rm{\blue{\: x = 13}}} \\\\\\:\implies\sf x + 14 = 0 \\\\\\:\implies\boxed{\rm{\blue{\: x = -14}}}\end{gathered}

\bigstar★ Finding numbers

First number (x) = 13

Second number (13 + 1) = 14[/tex]

⠀⠀⠀

\begin{gathered}\therefore\underline{\textsf{Two positive consecutive numbers are \textbf{13 \& 14}}}. \\ \end{gathered}

Answered by Anonymous
15

Derivation :

 \tt T = 2\pi \sqrt{ \dfrac{l}{g} }

For a restoring force of any system in SHM

 \sf \bf F =  - mg  \: \sin  \theta

hence,

 \implies \sf \: ma =  -  \frac{m \: g \: x}{l} \\

 \implies \sf \:  \cancel{m}a =  -  \frac{ \cancel{m} \: g \: x}{l} \\

 \implies  \sf \: \bf {{a =  - g \:  \frac{x}{l} }\underline{ \:  \:  \:  \:  \:  \:  \: }(1)} \\

Again,

we know

  \checkmark \:   \bf \:  \: { { a =  -  \omega ^{2} x}} \underline{ \:  \:  \:  \:  \:  \:  \: }(2)

Comparing

 \sf  -  \frac{g}{l} x =  { \omega}^{2} x \\  \\  \\ \implies \sf \omega =  \sqrt{ \frac{g}{l} }  \\  \\  \\  \implies \sf \:2 \pi n =  \sqrt{ \frac{g}{l} }  \\  \\  \\  \implies \sf \: \frac{1}{n} =   T =  2 \pi \sqrt{ \frac{l}{g} }  \\  \\  \\  \implies{ \underline{ \boxed{ \tt{T = 2 \pi \sqrt{ \frac{l}{g} } }}}}

 {\bf \: Note :}

  • \: \tt \: This \:  \:  \omega \:  \:  is  \:  \: not \:  \:  angular \:  \:  velocity \:  \:  it's \:  \:  angular  \:  \: frequency. \: \: In \: \: physics\: \: both \: \: are \: \: having\: \: same \: \: symbol (\omega)
  •  \tt \: we \:  \: use \:  \:T  = 2 \pi \sqrt{ \frac{l}{g} }  \bigg(1 +  \frac{1}{ {2}^{2}   } \sin^{2} \frac{ \theta}{2}  +  \frac{1}{ {2}^{2} } . \frac{ {3}^{2} }{ {4}^{2} }  { \sin}^{4}  \frac{ \theta}{2}  +  \dots \bigg) \bf \:  \: [when \theta > 4]

 \small \tt \colorbox{aqua}{@StayHigh}

Attachments:
Similar questions