derive three equation of motion mathematically
Answers
Step-by-step explanation:
Let us begin with the first equation, v=u+at. This equation only talks about the acceleration, time, the initial and the final velocity. Let us assume a body that has a mass “m” and initial velocity “u”. Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”. Now we know that:
Acceleration = Change in velocity/Time Taken
Therefore, Acceleration = (Final Velocity-Initial Velocity) / Time Taken
Hence, a = v-u /t or at = v-u
Therefore, we have: v = u + at
v² = u² + 2as
We have, v = u + at. Hence, we can write t = (v-u)/a
Also, we know that, Distance = average velocity × Time
Therefore, for constant acceleration we can write: Average velocity = (final velocity + initial velocty)/2 = (v+u)/2
Hence, Distance (s) = [(v+u)/2] × [(v-u)/a]
or s = (v² – u²)/2a
or 2as = v² – u²
or v² = u² + 2as
s = ut + ½at²
Let the distance be “s”. We know that
Distance = Average velocity × Time. Also, Average velocity = (u+v)/2
Therefore, Distance (s) = (u+v)/2 × t
Also, from v = u + at, we have:
s = (u+u+at)/2 × t = (2u+at)/2 × t
s = (2ut+at²)/2 = 2ut/2 + at²/2
or s = ut +½ at²
Answer:
The first equation: Every object either in rest or uniform motion continues to be in that state until and unless an external unbalanced force acts upon it.
The second law:The rate of change of momentum of any body is directly proportional to applied force in the same direction.
The third law: For every action there is an equal and opposite reaction
Step-by-step explanation:
For second law..
for a body under the action of force F for time dt with mass m and velocity v ... we have p=mv and change is ∆p=m∆v
therefore by second law F is directly proportional to dp/dt ..
so F=k. dp/dt(k=some constant)
as p=mv and thus
F=d/dt (mv)
and as dv/dt = a (a=acceleration)
so we have
F=k.ma
taking k=1
F=ma. (a=acceleration)
For 3rd law
Let us consider two bodies A and B having mass m1 and m2 . Let them colloid and then the forces can be
force on A by B =F(AB)
force on B by A =F(BA)
so by third law
F(AB)= -F(AB)
HOPE U LIKE IT