Derive wien's radiation law from planck's radiation law
Answers
Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.[1]
At the end of the 19th century, physicists were unable to explain why the observed spectrum of black body radiation, which by then had been accurately measured, diverged significantly at higher frequencies from that predicted by existing theories. In 1900, Max Planck heuristically derived a formula for the observed spectrum by assuming that a hypothetical electrically charged oscillator in a cavity that contained black-body radiation could only change its energy in a minimal increment, E, that was proportional to the frequency of its associated electromagnetic wave. This resolved the problem of the ultraviolet catastrophe predicted by classical physics.
It was a pioneering insight of modern physics and is of fundamental importance to quantum theory.
All objects with a temperature above absolute zero (0 K, -273.15 oC) emit energy in the form of electromagnetic radiation. A blackbody is a theoretical or model body which absorbs all radiation falling on it, reflecting or transmitting none.