Math, asked by anshuman9377, 8 months ago

Deriviation of cos^-1[(1+x)/2]^1/2 ??​

Answers

Answered by waqarsd
1

Answer:

[tex] - \frac{1}{2 \sqrt{1 - {x}^{2} } [/tex]

Step-by-step explanation:

 \frac{d}{dx} ( {cos}^{ - 1}  \sqrt{ \frac{1 + x}{2} } ) \\  \\ let \: x = cos  \:  2y \\  \\  \frac{d}{dx} ( {cos}^{ - 1}  \sqrt{ \frac{1 + cos \: 2y}{2} } )\\  \\  \frac{d}{dx} ( {cos}^{ - 1}  \sqrt{ \frac{2 {cos}^{2}y }{2} }) \\  \\  \frac{d}{dx} ( {cos}^{ - 1}  \sqrt{ {cos}^{2}y } )\\  \\  \frac{d}{dx} ( {cos}^{ - 1} cos \: y ) \\  \\  \frac{d}{dx} (y) \\  \\  \frac{d}{dx} ( \frac{1}{2}  {cos}^{ - 1} x) \\  \\   \frac{1}{2}  \times ( -  \frac{1}{ \sqrt{1 -  {x}^{2} } } )

HOPE IT HELPS

Similar questions