Describe 5 most important branches of physics
Answers
Answered by
1
2
Main articles: Thermodynamics and Statistical mechanics
The first chapter of The Feynman Lectures on Physics is about the existence of atoms, which Feynman considered to be the most compact statement of physics, from which science could easily result even if all other knowledge was lost.[1] By modeling matter as collections of hard spheres, it is possible to describe the kinetic theory of gases, upon which classical thermodynamics is based.
Thermodynamics studies the effects of changes in temperature, pressure, and volumeon physical systems on the macroscopicscale, and the transfer of energy as heat.[2][3]Historically, thermodynamics developed out of the desire to increase the efficiency of early steam engines.[4]
The starting point for most thermodynamic considerations is the laws of thermodynamics, which postulate that energycan be exchanged between physical systems as heat or work.[5] They also postulate the existence of a quantity named entropy, which can be defined for any system.[6] In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of system and surroundings. A system is composed of particles, whose average motions define its properties, which in turn are related to one another through equations of state. Properties can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes
3
Main articles: Special relativity and General relativity
The special theory of relativity enjoys a relationship with electromagnetism and mechanics; that is, the principle of relativityand the principle of stationary action in mechanics can be used to derive Maxwell's equations,[7][8] and vice versa.
The theory of special relativity was proposed in 1905 by Albert Einstein in his article "On the Electrodynamics of Moving Bodies". The title of the article refers to the fact that special relativity resolves an inconsistency between Maxwell's equations and classical mechanics. The theory is based on two postulates: (1) that the mathematical forms of the laws of physics are invariant in all inertial systems; and (2) that the speed of light in a vacuum is constant and independent of the source or observer. Reconciling the two postulates requires a unification of space and time into the frame-dependent concept of spacetime.
4
Quantum mechanics is the branch of physics treating atomic and subatomic systems and their interaction with radiation. It is based on the observation that all forms of energy are released in discrete units or bundles called "quanta". Remarkably, quantum theory typically permits only probable or statisticalcalculation of the observed features of subatomic particles, understood in terms of wave functions. The Schrödinger equationplays the role in quantum mechanics that Newton's laws and conservation of energyserve in classical mechanics—i.e., it predicts the future behavior of a dynamic system—and is a wave equation that is used to solve for wavefunctions.
In 1924, Louis de Broglie proposed that not only do light waves sometimes exhibit particle-like properties, but particles may also exhibit wave-like properties. Two different formulations of quantum mechanics were presented following de Broglie's suggestion. The wave mechanics of Erwin Schrödinger(1926) involves the use of a mathematical entity, the wave function, which is related to the probability of finding a particle at a given point in space. The matrix mechanics of Werner Heisenberg (1925) makes no mention of wave functions or similar concepts but was shown to be mathematically equivalent to Schrödinger's theory. A particularly important discovery of the quantum theory is the uncertainty principle, enunciated by Heisenberg in 1927, which places an absolute theoretical limit on the accuracy of certain measurements; as a result, the assumption by earlier scientists that the physical state of a system could be measured exactly and used to predict future states had to be abandoned. Quantum mechanics was combined with the theory of relativity in the formulation of Paul Dirac. Other developments include quantum statistics, quantum electrodynamics, concerned with interactions between charged particles and electromagnetic fields; and its generalization, quantum field theory.
See also: String theory, Quantum gravity, and Loop quantum gravity
5
Main articles: Atomic physics; Molecular physics; Optical physics; Optics; and atomic, molecular, and optical physics
Optics is the study of light, and the instruments created to use or detect it (i.e. telescopes, spectrometers, etc.). Atomic physics, molecular physics, and optical physics are each individual sub-fields of AMO that study the physical properties of the atom, molecules, and light, respectively.
See also: Nanotechnology and Optical instruments
Similar questions
Math,
9 months ago
Political Science,
9 months ago
Hindi,
9 months ago
Math,
1 year ago
Math,
1 year ago