Biology, asked by satabdichetry, 4 months ago

Describe briefly epicuticular waxes notes​

Answers

Answered by kumaragarwalr571
3

Answer:

Epicuticular wax is a coating of wax covering the outer surface of the plant cuticle in land plants. It may form a whitish film or bloom on leaves, fruits and other plant organs.

Explanation:

plz Mark me as Brainliest and follow me...

Answered by Anonymous
3

Answer:

Epicuticular wax is a coating of wax covering the outer surface of the plant cuticle in land plants. It may form a whitish film or bloom on leaves, fruits and other plant organs. Chemically, it consists of hydrophobic organic compounds, mainly straight-chain aliphatic hydrocarbons with or without a variety of substituted functional groups. The main functions of the epicuticular wax are to decrease surface wetting and moisture loss. Other functions include reflection of ultraviolet light, assisting in the formation of an ultrahydrophobic and self-cleaning surface and acting as an anti-climb surface.

Chemical composition

  • Common constituents of epicuticular wax are predominantly straight-chain aliphatic hydrocarbons that may be saturated or unsaturated and contain a variety of functional groups.
  • Common constituents of epicuticular wax are predominantly straight-chain aliphatic hydrocarbons that may be saturated or unsaturated and contain a variety of functional groups. Paraffins occur in leaves of peas and cabbages, alkyl esters in leaves of carnauba palm and banana, the asymmetrical secondary alcohol 10-nonacosanol in most gymnosperms such as Ginkgo biloba and Sitka spruce, many of the Ranunculaceae, Papaveraceae and Rosaceae and some mosses, symmetrical secondary alcohols in Brassicaceae including Arabidopsis thaliana, primary alcohols (mostly octacosan-1-ol) in most grasses Poaceae, Eucalyptus and legumes among many other plant groups, β-diketones in many grasses, Eucalyptus, box Buxus and the Ericaceae, aldehydes in young beech leaves, sugarcane culms and lemon fruit and triterpenes in fruit waxes of apple, plum and grape.
  • Common constituents of epicuticular wax are predominantly straight-chain aliphatic hydrocarbons that may be saturated or unsaturated and contain a variety of functional groups. Paraffins occur in leaves of peas and cabbages, alkyl esters in leaves of carnauba palm and banana, the asymmetrical secondary alcohol 10-nonacosanol in most gymnosperms such as Ginkgo biloba and Sitka spruce, many of the Ranunculaceae, Papaveraceae and Rosaceae and some mosses, symmetrical secondary alcohols in Brassicaceae including Arabidopsis thaliana, primary alcohols (mostly octacosan-1-ol) in most grasses Poaceae, Eucalyptus and legumes among many other plant groups, β-diketones in many grasses, Eucalyptus, box Buxus and the Ericaceae, aldehydes in young beech leaves, sugarcane culms and lemon fruit and triterpenes in fruit waxes of apple, plum and grape. Cyclic constituents are often recorded in epicuticular waxes but are generally minor constituents.
  • Common constituents of epicuticular wax are predominantly straight-chain aliphatic hydrocarbons that may be saturated or unsaturated and contain a variety of functional groups. Paraffins occur in leaves of peas and cabbages, alkyl esters in leaves of carnauba palm and banana, the asymmetrical secondary alcohol 10-nonacosanol in most gymnosperms such as Ginkgo biloba and Sitka spruce, many of the Ranunculaceae, Papaveraceae and Rosaceae and some mosses, symmetrical secondary alcohols in Brassicaceae including Arabidopsis thaliana, primary alcohols (mostly octacosan-1-ol) in most grasses Poaceae, Eucalyptus and legumes among many other plant groups, β-diketones in many grasses, Eucalyptus, box Buxus and the Ericaceae, aldehydes in young beech leaves, sugarcane culms and lemon fruit and triterpenes in fruit waxes of apple, plum and grape. Cyclic constituents are often recorded in epicuticular waxes but are generally minor constituents. They may include phytosterols such as β-sitosterol and pentacyclic triterpenoids such as ursolic acid and oleanolic acid and their respective precursors, α-amyrin and β-amyrin.

Similar questions