Describe briefly how one can demonstrate diffusion in liquid
Answers
Explanation:
Step-by-step explanation:
★Given -
\bf \rm{ \dfrac{sec \theta \: + tan \theta}{sec \theta \: - tan \theta} }
secθ−tanθ
secθ+tanθ
★To prove -
\bf\rm{ {\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2} }(
cosθ
1+sinθ
)
2
★Solution -
L.H.S
\longmapsto \bf \rm{ \dfrac{sec \theta \: + tan \theta}{sec \theta \: - tan \theta} }⟼
secθ−tanθ
secθ+tanθ
\longmapsto \bf \rm{ \dfrac{ \dfrac{1}{cos \theta} \: + \dfrac{sin \theta}{cos \theta} }{ \dfrac{1}{cos \theta} \: - \dfrac{sin \theta}{cos \theta} } }⟼
cosθ
1
−
cosθ
sinθ
cosθ
1
+
cosθ
sinθ
\bf \longmapsto \rm{ \dfrac{ \dfrac{1 + sin \theta}{cos \theta} }{ \dfrac{1 - sin \theta}{cos \theta} } }⟼
cosθ
1−sinθ
cosθ
1+sinθ
\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{ \cancel{cos \theta}} \times \dfrac{ \cancel{cos \theta}}{ 1 - sin \theta} }⟼
cosθ
1+sinθ
×
1−sinθ
cosθ
\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin \theta}}⟼
1−sinθ
1+sinθ
\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin \theta} \times \dfrac{1 + sin \theta}{1 + sin \theta} }⟼
1−sinθ
1+sinθ
×
1+sinθ
1+sinθ
\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1}^{2} - sin^{2} \theta}}⟼
1
2
−sin
2
θ
(1+sinθ)
2
\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1} - sin^{2} \theta}}⟼
1−sin
2
θ
(1+sinθ)
2
∵ sin²∅ + cos ²∅ = 1
=> cos²∅ = 1 - sin²∅
\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {cos}^{2} \theta}}⟼
cos
2
θ
(1+sinθ)
2
\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ ( {cos} \theta) ^{2} }}⟼
(cosθ)
2
(1+sinθ)
2
\longmapsto \bf \green{\rm{ { {{\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2} }}}= R.H.S}⟼(
cosθ
1+sinθ
)
2
=R.H.S
★More to know -
\rm{sin \theta = \dfrac{1}{cosec \theta} }sinθ=
cosecθ
1
\rm{cos \theta = \dfrac{1}{sec \theta} }cosθ=
secθ
1
\rm{tan \theta = \dfrac{1}{cot \theta} }tanθ=
cotθ
1
\rm{cosec \theta = \dfrac{1}{sin \theta} }cosecθ=
sinθ
1
\rm{sec \theta = \dfrac{1 }{cos \theta} }secθ=
cosθ
1
\rm{cot \theta = \dfrac{1 }{tan \theta} }cotθ=
tanθ
1