Chemistry, asked by chemistry6450, 1 year ago

❤ Describe -de- broglie concept of dual nature of matter...(5 marks) ​

Answers

Answered by captainfaizkhan
1
The whole universe is composed of matter and electromagnetic radiations. Since both are forms of energy so can be transformed into each other.

(b) The matter loves symmetry. As the radiation has dual nature, matter should also possess dual character.

According to the de Broglie concept of matter waves, the matter has dual nature. It means when the matter is moving it shows the wave properties (like interference, diffraction etc.) are associated with it and when it is in the state of rest then it shows particle properties. Thus the matter has dual nature. The waves associated with moving particles are matter waves or de-Broglie waves.

WAVELENGTH OF DE-BROGLIE WAVES

Consider a photon whose energy is given by

E=hυ=hc/λ – – (1)

If a photon possesses mass (rest mass is zero), then according to the theory of relatively ,its energy is given by

E=mc2 – – (2)

From (1) and (2) ,we have

Mass of photon m= h/cλ

Therefore Momentum of photon

P=mc=hc/cλ=h/λ – – (3)

Or λ = h/p

If instead of a photon, we consider a material particle of mass m moving with velocity v,then the momentum of the particle ,p=mv. Therefore, the wavelength of the wave associated with this moving particle is given by:

h/mv –

Or λ = h/p (But here p = mv) (4)

This wavelength is called DE-Broglie wavelength.
Answered by MrEccentric
0

★☆〖Qบęຮτ ı¨ ø nˇ〗☆★

⭐The Dual Nature of Matter⭐

=> de-Broglie's Principle states that "All material particles in motion possess wave characteristics..."

=> de-Broglie's Relationship can be derived by combining the mass and energy relationships proposed by Max Planck, and Albert Einstein...

E = ∫c²dm = Σc²Δm = mc²

E = hν

=> The combination of these two yielded the desired result:

λ = h/mc

=> The above equation is valid for a Photon(γ⁰)

=> The same relation can be extended to every particle of this universe, if the speed of light in vacua(c) is replaced by the ordinary velocity of the particle:

 \:  \:  \:  \:  \:  \:  \:  \:  \: λ =  \frac{h}{ \: mv⃗}

____________________________________

________________

<Judge It Yourself...>

(100% Plagiarism-Free ☺️☺️)

Hope it helps you! ヅ

✪ Be Brainly ✪

Similar questions