Describe general linear model and studies derived from it
Answers
Answer:
Explanation:
The general linear model or multivariate regression model is a statistical linear model. It may be written as[1]
{\displaystyle \mathbf {Y} =\mathbf {X} \mathbf {B} +\mathbf {U} ,}\mathbf {Y} =\mathbf {X} \mathbf {B} +\mathbf {U} ,
where Y is a matrix with series of multivariate measurements (each column being a set of measurements on one of the dependent variables), X is a matrix of observations on independent variables that might be a design matrix (each column being a set of observations on one of the independent variables), B is a matrix containing parameters that are usually to be estimated and U is a matrix containing errors (noise). The errors are usually assumed to be uncorrelated across measurements, and follow a multivariate normal distribution. If the errors do not follow a multivariate normal distribution, generalized linear models may be used to relax assumptions about Y and U.
The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable. If Y, B, and U were column vectors, the matrix equation above would represent multiple linear regression.
Hypothesis tests with the general linear model can be made in two ways: multivariate or as several independent univariate tests. In multivariate tests the columns of Y are tested together, whereas in univariate tests the columns of Y are tested independently, i.e., as multiple univariate tests with the same design matrix.