English, asked by s7376, 10 months ago

describe gravitational force and it's equation.​

Answers

Answered by Anonymous
35

⠀⠀⠀⠀⠀{ \huge \bf{ \mid{ \overline{ \underline{ \pink{QUESTION}}}}  \mid}} \longrightarrow</p><p>

Describe GRAVITATIONAL FIELD

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \red{ \bold{ \underline{ \bf{AnSweR }}}}}}

⠀⠀⠀⠀{ \underline{ \purple{ \bold{ \underline{ \bf{GraviTationAl\:\:\:foRce }}}}}}

The force of gravity is an attractive force between two objects with mass.

The force of gravity is directly proportional to both objects masses;m,and has an inverse square relationship with the distance,r, between the object's;centre.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:{ \boxed{ \fbox{ \pink{ \ {Fg= G \frac{(m1.m2)}{r {}^{2} } }}}}}

The universal gravitation constant.G has the following value:-

 \bf \:  G = 6.673.10 {}^{ - 11}  \frac{N.m {}^{2} }{kg {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: {F9= G \frac{(m1.m2)}{r {}^{2} } }

  • F9 = Force of gravity (N)

  • G = Universal gravitational constant \bf \:  </strong><strong>(</strong><strong>G = 6.673.10 {}^{ - 11}  \frac{N.m {}^{2} }{kg {}^{2} }</strong><strong>)</strong><strong>

  • r = distance between centres (m)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
123

⠀⠀⠀⠀⠀{ \huge \bf\underline{ \blue{\rm{QUESTION}}}  } \longrightarrow</p><p>

Describe GRAVITATIONAL FIELD

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \blue{ \bold{ \bf{AnsweR }}}}}

⠀⠀⠀⠀{ \underline{ \pink{ \bold{ \underline{ \bf{Gravitational\:\:\:force }}}}}}

The force of gravity is an attractive force between two objects with mass.

The force of gravity is directly proportional to both objects masses;m,and has an inverse square relationship with the distance,r, between the object's;centre.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:{ \boxed{ \fbox{ \green{ \ {Fg= G \frac{(m1.m2)}{r {}^{2} } }}}}}

The universal gravitation constant.G has the following value:-

 \bf \:  G = 6.673.10 {}^{ - 11}  \frac{N.m {}^{2} }{kg {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: {F9= G \frac{(m1.m2)}{r {}^{2} } }

F9 = Force of gravity (N)

G = Universal gravitational constant \bf \:  (G = 6.673.10 {}^{ - 11}  \frac{N.m {}^{2} }{kg {}^{2} })

r = distance between centres (m)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions