Math, asked by alew3734, 6 months ago

Describe in detail how you would create a number line with the following points: 4, 1.25, the opposite of 3, and − (−2 fraction of one-half ). Please be sure to describe on which tick marks each point is plotted and how many tick marks are between each integer. It may help for you to draw this number line by hand on a sheet of paper first.

Answers

Answered by 1163146
0

Answer:

sorry can'tsijf6tc   ece cst5c

Step-by-step explanation:

Answered by Aloneboi26
1

Step-by-step explanation:

Hᴇʏ ɢᴜʏs,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

TrigonometryTable

Qᴜᴇsᴛɪᴏɴ-:

Eᴠᴀʟᴜᴀᴛᴇ ᴛʜɪs :

I) sɪɴ60°ᴄᴏs30°+sɪɴ30°ᴄᴏs60°

Yᴏᴜ ᴄᴀɴ ᴛᴀᴋᴇ ʜᴇʟᴘ ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛᴀʙʟᴇ.

Similar questions