Math, asked by manju986838, 2 months ago

Describe, sketch and label the focus, vertex and directrix of the parabola

16

ଶ + 24 − 32 + 25 = 0.

Answers

Answered by skrithik043
0

Answer:

24_________32--------

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

Describe, sketch and label the focus, vertex and directrix of the parabola

 \sf{16 {x}^{2} + 24x - 32y + 25 = 0 }

EVALUATION

Here the given equation of the parabola is

 \sf{16 {x}^{2} + 24x - 32y + 25 = 0 }

  \displaystyle\sf{ \implies {(4x)}^{2} + 2 \times 4x \times 3 +  {(3)}^{2}  - 32y + 16 = 0 }

  \displaystyle\sf{ \implies {(4x + 3)}^{2}   =  32y  -  16  }

  \displaystyle\sf{ \implies { \bigg(x +  \frac{3}{4}  \bigg)}^{2}   =  2 \bigg(y  -   \frac{1}{2}  \bigg)  }

Comparing with

  \displaystyle\sf{ \implies { \bigg(x  -    \alpha   \bigg)}^{2}   =  4a \bigg(y  -    \beta   \bigg)  }

We get

  \displaystyle\sf{ \implies    \alpha  =  - \frac{3}{4}   \: , \: a =  \frac{1}{2}     \:  ,\: \beta  =    \frac{1}{2} }

  \displaystyle\sf{ focus = (    \alpha     \: , \: a  + \beta ) =  \bigg( -  \frac{3}{4}  ,1 \bigg) }

  \displaystyle\sf{ vertex = (    \alpha     \: , \:  \beta ) =  \bigg( -  \frac{3}{4} \:   ,  \: \frac{1}{2}  \bigg) }

Equation of the directrix

 \sf{y +  a  =  \beta }

  \displaystyle\sf{  \implies \: y   +  \frac{1}{2}  =  \frac{1}{2}   }

  \displaystyle\sf{  \implies \: y   =  0 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the centre, the length of axes, eccentricity, foci of the ellipse 3x2 + 4y2 -12x – 8y +4 =0

https://brainly.in/question/25777605

2. If base radius of a cylinder is doubled then the volume of new cylinder = ______times the volume of given cylinder

https://brainly.in/question/33235561

Attachments:
Similar questions