Describe the changes that occurred in the composition of the Company's army.
Answers
Explanation:
The following changes occurred in the composition of the Company's army: (i) The Company started recruiting professional soldiers in place of sawars and paidal (foot) soldiers. (ii) The soldiers of the Company were now armed with muskets and matchlocks. (iii) The British began to develop a uniform military culture.
Answer:
Answer:
{\underline{\underline{\maltese\textbf{\textsf{\red{Question}}}}}}✠Question
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
\begin{gathered}\end{gathered}
{\underline{\underline{\maltese\textbf{\textsf{\red{Solution}}}}}}✠Solution
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
{: \implies{\sf\bigg({\dfrac{x - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 2x}{3}} \bigg)}}:⟹(2x−(6×2))=(3(8×3)−2x)
{: \implies{\sf\bigg({\dfrac{x - 12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 2x}{3}} \bigg)}}:⟹(2x−12)=(324−2x)
By cross multiplication
: \implies\sf{3(x - 12) = \bf{2(24 - 2x)}}:⟹3(x−12)=2(24−2x)
: \implies\sf{3x - 36 = \bf{48 - 4x}}:⟹3x−36=48−4x
: \implies\sf{4x - 3x = \bf{48 -36}}:⟹4x−3x=48−36
: \implies\sf{x = \bf{12}}:⟹x=12
{\dag{\underline{\boxed{\sf{x =12}}}}}†x=12
Hence, The value of x is 12.
\begin{gathered}\end{gathered}
{{\underline{\underline{\maltese\textbf{\textsf{\red{Verification}}}}}}}✠Verification
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
Substituting the value of x
: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2 \times 12}{3}} \bigg)}:⟹(212−6)=(8−32×12)
: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{24}{3}} \bigg)}:⟹(212−6)=(8−324)
{: \implies{\sf\bigg({\dfrac{12 - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 24}{3}} \bigg)}}:⟹(212−(6×2))=(3(8×3)−24)
{: \implies{\sf\bigg({\dfrac{12 -12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 24}{3}} \bigg)}}:⟹(212−12)=(324−24)
{: \implies{\sf\bigg({\dfrac{0}{2}}\bigg) = \bf\bigg({\dfrac{0}{3}} \bigg)}}:⟹(20)=(30)
: \implies\sf{0} = \bf{0}:⟹0=0
\dag{\underline{\boxed{\sf{LHS=RHS}}}}†LHS=RHS
Hence Verified!!
Explanation:
plz mark branlist