Science, asked by adititripathi, 11 months ago

describe the mendel's law with the help of example

Answers

Answered by Adityajaiswal2005
1
Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism. The laws were derived by the Austrian monk Gregor Mendel (1822–1884) based on experiments he conducted in the period from about 1857 to 1865. For his experiments, Mendel used ordinary pea plants. Among the traits that Mendel studied were the color of a plant's flowers, their location on the plant, the shape and color of pea pods, the shape and color of seeds, and the length of plant stems.

Mendel's approach was to transfer pollen (which contains male sex cells) from the stamen (the male reproductive organ) of one pea plant to the pistil (female reproductive organ) of a second pea plant. As a simple example of this kind of experiment, suppose that one takes pollen from a pea plant with red flowers and uses it to fertilize a pea plant with white flowers. What Mendel wanted to know is what color the flowers would be in the offspring of these two plants. In a second series of experiments, Mendel studied the changes that occurred in the second generation. That is, suppose two offspring of the red/white mating ("cross") are themselves mated. What color will the flowers be in this second generation of plants? As a result of these experiments, Mendel was able to state three generalizations about the way characteristics are transmitted from one generation to the next in pea plants.

Mendel's laws

Mendel's law of segregation describes what happens to the alleles that make up a gene during formation of gametes. For example, suppose that a pea plant contains a gene for flower color in which both alleles code for red. One way to represent that condition is to write RR, which indicates that both alleles (R and R) code for the color red. Another gene might have a different combination of alleles, as in Rr. In this case, the symbol R stands for red color and the r for "not red" or, in this case, white. Mendel's law of segregation says that the alleles that make up a gene separate from each other, or segregate, during the formation of gametes. That fact can be represented by simple equations, such as:
RR → R + R or Rr → R + r
Mendel's second law is called the law of independent assortment. That law refers to the fact that any plant contains many different kinds of genes. One gene determines flower color, a second gene determines length of stem, a third gene determines shape of pea pods, and so on. Mendel discovered that the way in which alleles from different genes separate and then recombine is unconnected to other genes. That is, suppose that a plant contains genes for color (RR) and for shape of pod (TT). Then Mendel's second law says that the two genes will segregate independently, as:
RR → R + R and TT → T + T
Mendel's third law deals with the matter of dominance. Suppose that a gene contains an allele for red color (R) and an allele for white color (r). What will be the color of the flowers produced on this plant? Mendel's answer was that in every pair of alleles, one is more likely to be expressed than the other. In other words, one allele is dominant and the other allele is recessive. In the example of an Rr gene, the flowers produced will be red because the allele R is is dominant over the allele r.
Attachments:
Similar questions