Describe various types of connective tissue proper with suitable examples
Answers
Answer:
Explanation:
Connective tissues perform many functions in the body, most importantly, they support and connect other tissues: from the connective tissue sheath that surrounds a muscle, to the tendons that attach muscles to bones, and to the skeleton that supports the positions of the body. Protection is another major function of connective tissue, in the form of fibrous capsules and bones that protect delicate organs. Specialized cells in connective tissue defend the body from microorganisms that enter the body. Transport of gases, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body.
Embryonic Connective Tissue
All connective tissues derive from the mesodermal layer of the embryo (see Figure 4.2.2). The first connective tissue to develop in the embryo is mesenchyme, the stem cell line from which all connective tissues are later derived. Clusters of mesenchymal cells are scattered throughout adult tissue and supply the cells needed for replacement and repair after a connective tissue injury. A second type of embryonic connective tissue forms in the umbilical cord, called mucous connective tissue or Wharton’s jelly. This tissue is no longer present after birth, leaving only scattered mesenchymal cells throughout the body.
Structural Elements of Connective Tissue
Connective tissues come in a vast variety of forms, yet they typically have in common three characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. Unlike epithelial tissue, which is composed of cells closely packed together, cells of connective tissue are more widely dispersed within an extracellular matrix (ECM). The matrix plays a major role in the functioning of this tissue. The major component of the matrix is ground substance. This ground substance is usually a fluid, but it can also be mineralized and solid, as in bones. The amount and structure of each component correlates with the function of the tissue, from the rigid ground substance in bones supporting the body to the inclusion of specialized cells; for example, a phagocytic cell that engulfs pathogens and also rids tissue of cellular debris.
Cell Types
Each class of connective tissue is formed by fundamental cell types. The cells can be found in both an active form (suffix –blast), where they are dividing and secreting the components of ground substance, and an in-active form (suffix –cyte). The most abundant cell in connective tissue proper is the fibroblast. Polysaccharides and proteins secreted by fibroblasts combine with extra-cellular fluids to produce a viscous ground substance that, with embedded fibrous proteins and cells, forms the extra-cellular matrix. Chondroblasts and osteoblasts are the primary specialized cell type located in cartilage and bone, respectively.
Adipocytes are cells that store lipids as droplets that fill most of the cytoplasm. There are two basic types of adipocytes: white and brown. The brown adipocytes store lipids as many droplets, and have high metabolic activity. In contrast, white fat adipocytes store lipids as a single large drop and are metabolically less active. Their effectiveness at storing large amounts of fat is witnessed in obese individuals. The number and type of adipocytes depends on the tissue and location, and vary among individuals in the population.
The mesenchymal cell is a multipotent adult stem cell. These cells can differentiate into any type of connective tissue cells needed for repair and healing of damaged tissue.
The macrophage cell is a large cell derived from a monocyte, a type of blood cell, which enters the connective tissue matrix from the blood vessels. The macrophage cells are an essential component of the immune system, which is the body’s defense against potential pathogens and degraded host cells. When stimulated, macrophages release cytokines, small proteins that act as chemical messengers. Cytokines recruit other cells of the immune system to infected sites and stimulate their activities. Roaming, or free, macrophages move rapidly by amoeboid movement, engulfing infectious agents and cellular debris. In contrast, fixed macrophages are permanent residents of their tissues.
The mast cell, found in connective tissue proper, has many cytoplasmic granules. These granules contain the chemical signals histamine and heparin. When irritated or damaged, mast cells release histamine, an inflammatory mediator, which causes vasodilation and increased blood flow at a site of injury or infection, along with itching, swelling, and redness (in people with light skin), recognized as an allergic response. Mast cells are derived from hematopoietic stem cells and are part of the immune system.
Answer:
various type of connective tissues are
areolar connective tissue
adipose tissue - in upper skin surfaces
elastin tissue
cartilagenou tissue - in cartilage
dense regular tissue
dense irregular tissue.
hematopoietic - cell in bone