Descrit fourier transformation of unit step function
Answers
Answered by
1
u[n]=f[n]+g[n]
Where:
f[n]=12 for −∞<n<∞
and
g[n]={12 for n≥0−12 for n<0
do:
δ[n]=g[n]−g[n−1]
U Know DTFT of δ[n] is 1 and DTFT of g[n]−g[n−1]→G(ejω)−e−jωG(ejω) so: 1=G(ejω)−e−jωG(ejω)
therefore
G(ejω)=11−e−jω
and we know that the DTFT of f[n]→F(ejω)=π∑∞k=−∞δ(ω−2πk)
finally :
u[n]=f[n]+g[n]→U(ejω)=F(ejω)+G(ejω)
U(ejω)=11−e−jω+π∑∞k=−∞δ(ω−2πk)
share improve this answer
Firstly, you need to be aware that
u[n]=∑n=0∞δ[n]
And according to Accumulation property of DTFT which implies that:
y[n]=∑m=−∞nx[m]
∑m=−∞nx[m]⟺11−e−jωX(ejω)+πX(ej0)∑k=−∞∞δ(ω−2πk) ∗
Now assume that:
x[n]=∑m=−∞ng[m]
g[n]=δ[n]
G(ejω)=1
Substitute in *:
11−e−jωG(ejω)+πG(ej0)∑k=−∞∞δ(ω−2πk)
Now refine the last formula:
HINT: G(ejω)=1G(ej0)=1
11−e−jω+π∑k=−∞∞δ(ω−2πk
Similar questions