Science, asked by ananyapalak0507, 17 days ago

Design a problem, complete with a solution, to help other students better understand Kirchhoff’s Current Law. Design the problem by specifying values of ia, ib, and ic, shown in Figure, and asking them to solve for values of i1, i2, and i3. Be careful to specify realistic currents.​

Attachments:

Answers

Answered by a13278
0

Explanation:

KCL to obtain currents {i}_{1}, {i}_{2}i1,i2, and {i}_{3}i3 in the circuit shown in the Figure.

KCL to obtain currents {i}_{1}, {i}_{2}i1,i2, and {i}_{3}i3 in the circuit shown in the Figure.Solution

KCL to obtain currents {i}_{1}, {i}_{2}i1,i2, and {i}_{3}i3 in the circuit shown in the Figure.SolutionAt node a, 8 = 12 + {i}_{1} \rightarrow \underline{{i}_{1} = – 4A}8=12+i1→i1=–4A

KCL to obtain currents {i}_{1}, {i}_{2}i1,i2, and {i}_{3}i3 in the circuit shown in the Figure.SolutionAt node a, 8 = 12 + {i}_{1} \rightarrow \underline{{i}_{1} = – 4A}8=12+i1→i1=–4AAt node c, 9 = 8 + {i}_{2} \rightarrow \underline{{i}_{2} = 1A}9=8+i2→i2=1A

KCL to obtain currents {i}_{1}, {i}_{2}i1,i2, and {i}_{3}i3 in the circuit shown in the Figure.SolutionAt node a, 8 = 12 + {i}_{1} \rightarrow \underline{{i}_{1} = – 4A}8=12+i1→i1=–4AAt node c, 9 = 8 + {i}_{2} \rightarrow \underline{{i}_{2} = 1A}9=8+i2→i2=1AAt node d, 9 = 12 + {i}_{3} \rightarrow \underline{{i}_{3} = -3A}9=12+i3→i3=−3A

Similar questions