design features of cryostat?choose one of these
a)pressure across cryostatic fluid
b)magnetic field of cryostats
c)electric current voltage of cryostats
d)variable temperature of cryostats
Answers
Answer:
Variable temperature of cryostats is the right answer
Answer:
A cryostat (from cryo meaning cold and stat meaning stable) is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium.[1] Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.
Closed-cycle cryostats
Closed-cycle cryostats consist of a chamber through which cold helium vapour is pumped. An external mechanical refrigerator extracts the warmer helium exhaust vapour, which is cooled and recycled. Closed-cycle cryostats consume a relatively large amount of electrical power, but need not be refilled with helium and can run continuously for an indefinite period. Objects may be cooled by attaching them to a metallic coldplate inside a vacuum chamber which is in thermal contact with the helium vapour chamber.
Continuous-flow cryostats
Continuous-flow cryostats are cooled by liquid cryogens (typically liquid helium or nitrogen) from a storage dewar. As the cryogen boils within the cryostat, it is continuously replenished by a steady flow from the storage dewar. Temperature control of the sample within the cryostat is typically performed by controlling the flow rate of cryogen into the cryostat together with a heating wire attached to a PID temperature control loop. The length of time over which cooling may be maintained is dictated by the volume of cryogens available.
Owing to the scarcity of liquid helium, some laboratories have facilities to capture and recover helium as it escapes from the cryostat, although these facilities are also costly to operate.
Bath cryostats
Bath cryostats are similar in construction to vacuum flasks filled with liquid helium. A coldplate is placed in thermal contact with the liquid helium bath. The liquid helium may be replenished as it boils away, at intervals between a few hours and several months, depending on the volume and construction of the cryostat. The boil-off rate is minimised by shielding the bath with either cold helium vapour, or vacuum shield with walls constructed from so-called super insulator material. The helium vapour which boils away from the bath very effectively cools thermal shields around the outside of the bath. In the older designs there may be additional liquid nitrogen bath, or several concentric layers of shielding, with gradually increasing temperatures. However, the invention of super insulator materials has made this technology obsolete.
Multistage cryostats
In order to achieve temperatures lower than liquid helium at atmospheric pressure, additional cooler stages may be added to the cryostat. Temperatures down to 1K can be reached by attaching the coldplate to a 1-K pot, which is a container of the He-4 isotope that may be pumped to low vapor pressure via a vacuum pump. Temperatures just below 0.300K may be achieved using He-3, the rare isotope of helium, as the working fluid in a helium pot. Temperatures down to 1mK can be reached by employing dilution refrigerator or dry dilution refrigerator typically in addition to the main stage and 1K pot. Temperatures below that can be reached using magnetic refrigeration.