detail in coloid and tindal effect.
Answers
Answer:
Explanation: The Tyndall effect is the phenomenon in which the particles in a colloid scatter the beams of light that are directed at them. This effect is exhibited by all colloidal solutions and some very fine suspensions. Therefore, it can be used to verify if a given solution is a colloid. The intensity of scattered light depends on the density of the colloidal particles as well as the frequency of the incident light.
When a beam of light passes through a colloid, the colloidal particles present in the solution do not allow the beam to completely pass through. The light collides with the colloidal particles and is scattered (it deviates from its normal trajectory, which is a straight line). This scattering makes the path of the light beam visible,
The Tyndall effect is the phenomenon in which the particles in a colloid scatter the beams of light that are directed at them. This effect is exhibited by all colloidal solutions and some very fine suspensions. Therefore, it can be used to verify if a given solution is a colloid. The intensity of scattered light depends on the density of the colloidal particles as well as the frequency of the incident light.
When a beam of light passes through a colloid, the colloidal particles present in the solution do not allow the beam to completely pass through. The light collides with the b makes the path of the light beam visible, as illustrated below.Under the Tyndall effect, the longer wavelengths are more transmitted while the shorter wavelengths are more diffusely reflected via scattering. The Tyndall effect is seen when light-scattering particulate matter is dispersed in an otherwise light-transmitting medium, when the diameter of an individual particle is the range of roughly between 40 and 900 nm, i.e. somewhat below or near the wavelengths of visible light (400–750 nm).
please mark me brainlist ✔️✔️✔️
✨ follow me ✨