detemine if the points
Answers
Correct Question:-
Determine if the points (1,5), (2,3), (-2,-11) are collinear.
GiveN:-
- (1,5)
- (2,3)
- (-2,-11)
To FinD:-
To determine are the points collinear or not.
SolutioN:-
Let the three points be A, B and C.
Collinear points are the points which form on the same line.
There are three cases possible :
✝ Case 1 :
A, B, C are collinear if,
AB + BC = AC
✝ Case 2 :
A, B, C are collinear if,
BA + AC = BC
✝ Case 3 :
A, B, C are collinear if,
BC + CA = BA
If neither case 1, case 2 or case 3 is not satisfied then the points are not collinear.
Let the points be :
- A(1,5)
- B(2,3)
- C(-2,-11)
To FinD the AB :
where,
- x₁ = 1
- x₂ = 2
- y₁ = 5
- y₂ = 3
Substituting the values in the required formula,
∴ Distance of AB = √5
_________________________________
To FinD the BC :
where,
- x₁ = 2
- x₂ = -2
- y₁ = 3
- y₂ = -11
Substituting the values in the required formula,
∴ Distance of BC = √212
_________________________________
To FinD the AC :
where,
- x₁ = 1
- x₂ = -2
- y₁ = 5
- y₂ = -11
Substituting the values in the required formula,
∴ Distance of AC = √265
_________________________________
Now we have to check the three cases:-
We have AB = √5, BC = √212 and AC = √265
✝ Case 1 :
AB + BC = AC
where,
- AB = √5
- BC = √212
- AC = √265
Substituting the values,
⇒ √5 + √212 = √265
⇒ √217 = √265
⇒ √217 ≠ √265
∴ LHS ≠ RHS
- Hence case 1 is not true.
✝ Case 2 :
BA + AC = BC
where,
- BA = √5
- BC = √212
- AC = √265
Substituting the values,
⇒ √5 + √265 = √212
⇒ √270 = √212
⇒ √270 ≠ √212
∴ LHS ≠ RHS
- Hence case 2 is not true.
✝ Case 3 :
BC + CA = BA
where,
- BA = √5
- BC = √212
- CA = √265
Substituting the values,
⇒ √212 + √265 = √5
⇒ √477 = √5
⇒ √477 ≠ √5
∴ LHS ≠ RHS
- Hence case 3 is not true.
Since all three cases are not satisfied the three points are not collinear.