Math, asked by pawankr62028, 3 months ago

detemine if the points
(1.5)(2.3)and( - 2. - 11)are coliner

Answers

Answered by Anonymous
1

Correct Question:-

Determine if the points (1,5), (2,3), (-2,-11) are collinear.

GiveN:-

  • (1,5)
  • (2,3)
  • (-2,-11)

To FinD:-

To determine are the points collinear or not.

SolutioN:-

Let the three points be A, B and C.

Collinear points are the points which form on the same line.

There are three cases possible :

✝ Case 1 :

A, B, C are collinear if,

AB + BC = AC

✝ Case 2 :

A, B, C are collinear if,

BA + AC = BC

✝ Case 3 :

A, B, C are collinear if,

BC + CA = BA

If neither case 1, case 2 or case 3 is not satisfied then the points are not collinear.

Let the points be :

  • A(1,5)
  • B(2,3)
  • C(-2,-11)

To FinD the AB :

\normalsize{\underline{\boxed{\sf{Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}}}}

where,

  • x₁ = 1
  • x₂ = 2
  • y₁ = 5
  • y₂ = 3

Substituting the values in the required formula,

 \\ : \normalsize\implies{\sf{Distance=\sqrt{(2-1)^2+(3-5)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{(1)^2+(-2)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{1+4}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{5}}} \\

Distance of AB = √5

_________________________________

To FinD the BC :

\normalsize{\underline{\boxed{\sf{Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}}}}

where,

  • x₁ = 2
  • x₂ = -2
  • y₁ = 3
  • y₂ = -11

Substituting the values in the required formula,

 \\ :\normalsize\implies{\sf{Distance=\sqrt{(-2-2)^2+(-11-3)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{(-4)^2+(-14)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{16+196}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{212}}} \\

Distance of BC = √212

_________________________________

To FinD the AC :

\normalsize{\underline{\boxed{\sf{Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}}}}

where,

  • x₁ = 1
  • x₂ = -2
  • y₁ = 5
  • y₂ = -11

Substituting the values in the required formula,

 \\ :\normalsize\implies{\sf{Distance=\sqrt{(-2-1)^2+(-11-5)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{(-3)^2+(-16)^2}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{9+256}}}

 \\ :\normalsize\implies{\sf{Distance=\sqrt{265}}} \\

Distance of AC = √265

_________________________________

Now we have to check the three cases:-

We have AB = √5, BC = √212 and AC = 265

✝ Case 1 :

AB + BC = AC

where,

  • AB = √5
  • BC = √212
  • AC = √265

Substituting the values,

⇒ √5 + √212 = √265

⇒ √217 = √265

⇒ √217 ≠ √265

LHSRHS

  • Hence case 1 is not true.

✝ Case 2 :

BA + AC = BC

where,

  • BA = √5
  • BC = √212
  • AC = √265

Substituting the values,

⇒ √5 + √265 = √212

⇒ √270 = √212

⇒ √270 ≠ √212

∴ LHS ≠ RHS

  • Hence case 2 is not true.

✝ Case 3 :

BC + CA = BA

where,

  • BA = √5
  • BC = √212
  • CA = √265

Substituting the values,

⇒ √212 + √265 = √5

⇒ √477 = √5

⇒ √477 ≠ √5

∴ LHS ≠ RHS

  • Hence case 3 is not true.

Since all three cases are not satisfied the three points are not collinear.

A(1,5), B(2,3) and C(-2,-11) are not collinear.


Aryan0123: Awesome!
Anonymous: Thank uh ;)
Anonymous: Thanks :)
Similar questions