Math, asked by amn98, 1 year ago

Determinants questions​

Attachments:

Answers

Answered by Swarup1998
16
\underline{\text{Proof :}}

\text{L.H.S.}=\left | \begin{array}{ccc}a&b&c\\a^{2}&b^{2}&c^{2}\\bc&ac&ab\end{array}\right |

\mathrm{C'_{1}\to aC_{1}\:,\:C'_{2}\to bC_{2}\:,\:C'_{3}\to cC_{3}}

=\frac{1}{abc}\left | \begin{array}{ccc}a^{2}&b^{2}&c^{2}\\a^{3}&b^{3}&c^{3}\\abc&abc&abc\end{array}\right |

\mathrm{Taking\:abc\:common\:from\:R_{3}}

=\frac{abc}{abc}\left | \begin{array}{ccc}a^{2}&b^{2}&c^{2}\\a^{3}&b^{3}&c^{3}\\1&1&1\end{array}\right |

\mathrm{Doing\:C'_{2}=C_{3}\to C_{2}}

=-\left | \begin{array}{ccc}a^{2}&b^{2}&c^{2}\\1&1&1\\a^{3}&b^{3}&c^{3}\end{array}\right |

\mathrm{Doing\:C'_{1}=C_{2}\to C_{1}}

=(-1)^{2}\left | \begin{array}{ccc}1&1&1\\a^{2}&b^{2}&c^{2}\\a^{3}&b^{3}&c^{3}\end{array}\right |

=\left | \begin{array}{ccc}1&1&1\\a^{2}&b^{2}&c^{2}\\a^{3}&b^{3}&c^{3}\end{array}\right |=\text{R.H.S.}

\text{Hence, proved.}
Answered by Anonymous
1

Answer:

I don't know DETERMINANTS. I know DISCRIMINANT. D =√b² - 4ac

Step-by-step explanation:

Similar questions