Math, asked by pesoderiya, 7 months ago

Determine (8x)^x if 9^x+2=240+9^x

Answers

Answered by Anonymous
8

GIVEN:-

  • \rm{9^{x+2} = 240 + 9x}

TO FIND:-

  • Determine\rm{ (8x)^x}

SOLUTION:-

\implies\tt{9^{x+2} = 240 + 9^x}

\implies\tt{ 9^x \times{9^2} =  240 + 9^x}

\implies\tt{9^x\times{81} = 240 + 9^x}

\implies\tt{ 9^x\times{81} - 9^x = 240}

\implies\tt{ 9^x(81-1)= 240 }

\implies\tt{ 9^x\times{80} = 240}

\implies\tt{ 9^x = \dfrac{240}{80}}

\implies\tt{ 9^x = 3}

\implies\tt{ 3^{2x} = 3}

  • Bases are same , equating the powers

\implies\tt{ 2x = 1}

\implies\tt{ x = \dfrac{1}{2}}.

Therefore,

\implies\tt{ (8x)^x = (8\times{\dfrac{1}{2}})^2}

\implies\tt{ (8x)^x = (4)^{\frac{1}{2}}}

\implies\tt{ (8x)^x = 2^{2\times{\frac{1}{2}}}}

\implies\tt{(8x)^x = 2}

Answered by Anonymous
29

ᎯᏁᏕᏯᎬᏒ

{\star} ~\red {\sf {{9}^{x  + 2}  = 240 +  {9}^{x}    }}

⇢\sf {9}^{x}  \times  {9}^{2}  = 240 +  {9}^{x}

⇢  \sf  {9}^{x}  \times 81 = 240 +  {9}^{x}

⇢  \sf  {9}^{x}  \times 81 -  {9}^{x}  = 240

⇢\sf  {9}^{x} (81 - 1) = 240

⇢  \sf  {9}^{x}  \times 80 = 240

⇢ \sf   {9}^{x}  =  \frac{240}{80}

⇢ \sf  {9}^{x}  = 3

⇢  \sf  {({3}^{2} ) }^{x}  = 3

⇢\sf   {3}^{2x}  =  {3}^{1}   ⇢ \sf  2x = 1

⇢ \sf  x =  \frac{1}{2}

\purple{.........................................................}

 \sf  {8x}^{x}  =   {(8  \times \frac{1}{2}) }^{ \frac{1}{2} }

  ⇢ \sf  {8x}^{x}  =    {4}^{ \frac{1}{2} }

 ⇢ \sf  {8x}^{x}  =    \sqrt{4}

   {\therefore}~ \red{ \sf {{8x}^{x}  =   2}}

Similar questions