Math, asked by veershal90, 2 months ago

Determine a and b if​

Attachments:

Answers

Answered by kartikpanchal2811
0

Answer:

000000000000000000000000

Answered by Mihir1001
1

 \quad \ \ \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow  \frac{ {(7 +  \sqrt{5}) }^{2}  -  {(7 -  \sqrt{5}) }^{2} }{(7 -  \sqrt{5} )(7 +  \sqrt{5} )}   = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow  \frac{ (54 + 14 \sqrt{5} ) - (54 - 14 \sqrt{5} )}{ {(7)}^{2} -  {( \sqrt{5} )}^{2}  }   = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow  \frac{ \cancel{54} + 14 \sqrt{5}  -  \cancel{54}+ 14 \sqrt{5} }{49 - 5}  = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow  \frac{ {}^{7}  \cancel{28} \sqrt{5} }{ \cancel{44} _{11} }   = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow  \frac{7 \sqrt{5} }{11}  = {\footnotesize{ a + 7 \sqrt{5} b}}

\Rightarrow {\footnotesize{0 + 7 \sqrt{5}  \:( \frac{1}{11} ) =  a + 7 \sqrt{5} b}}

On comparing,

  • a = 0
  • b = 1/11

....

Similar questions