Determine a and b if
Root 7+root5/root 7 -root 5 - root 7 -root 5 /Root 7+root5 = a+root 35 b
Answers
Answered by
0
Answer:
a=0 and b=\frac{7}{11}
Step-by-step explanation:
The given equation is :
\frac{7+\sqrt{5}}{7-\sqrt{5}}-\frac{7-\sqrt{5}}{7+\sqrt{5}}=a+b\sqrt{5}
Solving the LHS of the above equation, we get
\frac{(7+\sqrt{5}(7+\sqrt{5})-(7-\sqrt{5})(7-\sqrt{5})}{49-5}
=\frac{7+5+14\sqrt{5}-7-5+14\sqrt{5}}{44}
=\frac{7}{11}\sqrt{5}
=0+\frac{7}{11}\sqrt{5}
Now, comparing with the RHS of the equation, we get
a=0 and b=\frac{7}{11}
Similar questions
Biology,
7 months ago
English,
7 months ago
Political Science,
1 year ago
Science,
1 year ago
Math,
1 year ago