Math, asked by neetuabroluthra3711, 1 year ago

Determine a unit vector perpendicular to both a=2i+j+k and b=i-j+2k

Answers

Answered by parmesanchilliwack
255

Answer: \frac{1}{9 } (\hat{i}-\hat{j}-\hat{k})

Step-by-step explanation:

Let \vec{c} be the perpendicular vector to both vectors \vec{a} and \vec{b}

Thus, \vec{c}=\vec{a}\times \vec{b}

\vec{c} =  \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & -1 & 2\end{vmatrix}

= \hat{i}(2+1)-\hat{j}(4-1)+\hat{k}(-2-1)

= 3\hat{i} -3\hat{j} - 3\hat{k}

Thus, the unit vector of \vec{c} is,

\hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{3\hat{i}-3\hat{j}-3\hat{k}}{\sqrt{3^2+3^2+3^2} } = \frac{1}{\sqrt{729} } (3\hat{i}-3\hat{j}-3\hat{k})= \frac{1}{27 } (3\hat{i}-3\hat{j}-3\hat{k}) = \frac{1}{9 } (\hat{i}-\hat{j}-\hat{k})

Answered by risingstar10
156

Here's your answer

Hope it's helpful

Attachments:
Similar questions